@article {433, title = {Analysis of biostimulated microbial communities from two field experiments reveals temporal and spatial differences in proteome profiles.}, journal = {Environ Sci Technol}, volume = {44}, year = {2010}, month = {2010 Dec 1}, pages = {8897-903}, abstract = {Stimulated by an acetate-amendment field experiment conducted in 2007, anaerobic microbial populations in the aquifer at the Rifle Integrated Field Research Challenge site in Colorado reduced mobile U(VI) to insoluble U(IV). During this experiment, planktonic biomass was sampled at various time points to quantitatively evaluate proteomes. In 2008, an acetate-amended field experiment was again conducted in a similar manner to the 2007 experiment. As there was no comprehensive metagenome sequence available for use in proteomics analysis, we systematically evaluated 12 different organism genome sequences to generate sets of aggregate genomes, or "pseudo-metagenomes", for supplying relative quantitative peptide and protein identifications. Proteomics results support previous observations of the dominance of Geobacteraceae during biostimulation using acetate as sole electron donor, and revealed a shift from an early stage of iron reduction to a late stage of iron reduction. Additionally, a shift from iron reduction to sulfate reduction was indicated by changes in the contribution of proteome information contributed by different organism genome sequences within the aggregate set. In addition, the comparison of proteome measurements made between the 2007 field experiment and 2008 field experiment revealed differences in proteome profiles. These differences may be the result of alterations in abundance and population structure within the planktonic biomass samples collected for analysis.}, keywords = {Bacteria, Biodiversity, Biomass, Fresh Water, Plankton, Proteome, Water Microbiology}, issn = {1520-5851}, doi = {10.1021/es101029f}, author = {Callister, Stephen J and Wilkins, Michael J and Nicora, Carrie D and Williams, Kenneth H and Banfield, Jillian F and VerBerkmoes, Nathan C and Hettich, Robert L and N{\textquoteright}Guessan, Lucie and Mouser, Paula J and Elifantz, Hila and Smith, Richard D and Lovley, Derek R and Lipton, Mary S and Long, Philip E} } @article {444, title = {Expression of acetate permease-like (apl ) genes in subsurface communities of Geobacter species under fluctuating acetate concentrations.}, journal = {FEMS Microbiol Ecol}, volume = {73}, year = {2010}, month = {2010 Sep}, pages = {441-9}, abstract = {The addition of acetate to uranium-contaminated aquifers in order to stimulate the growth and activity of Geobacter species that reduce uranium is a promising in situ bioremediation option. Optimizing this bioremediation strategy requires that sufficient acetate be added to promote Geobacter species growth. We hypothesized that under acetate-limiting conditions, subsurface Geobacter species would increase the expression of either putative acetate symporters genes (aplI and aplII). Acetate was added to a uranium-contaminated aquifer (Rifle, CO) in two continuous amendments separated by 5 days of groundwater flush to create changing acetate concentrations. While the expression of aplI in monitoring well D04 (high acetate) weakly correlated with the acetate concentration over time, the transcript levels for this gene were relatively constant in well D08 (low acetate). At the lowest acetate concentrations during the groundwater flush, the transcript levels of aplII were the highest. The expression of aplII decreased 2-10-fold upon acetate reintroduction. However, the overall instability of acetate concentrations throughout the experiment could not support a robust conclusion regarding the role of apl genes in response to acetate limitation under field conditions, in contrast to previous chemostat studies, suggesting that the function of a microbial community cannot be inferred based on lab experiments alone.}, keywords = {Acetates, Bacterial Proteins, Biodegradation, Environmental, Fresh Water, Gene Expression Regulation, Bacterial, Gene Library, Geobacter, Membrane Transport Proteins, Multigene Family, RNA, Bacterial, Uranium, Water Pollutants, Radioactive}, issn = {1574-6941}, doi = {10.1111/j.1574-6941.2010.00907.x}, author = {Elifantz, Hila and N{\textquoteright}guessan, Lucie A and Mouser, Paula J and Williams, Kenneth H and Wilkins, Michael J and Risso, Carla and Holmes, Dawn E and Long, Philip E and Lovley, Derek R} } @article {451, title = {Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer.}, journal = {ISME J}, volume = {4}, year = {2010}, month = {2010 Feb}, pages = {253-66}, abstract = {Nutrient limitation is an environmental stress that may reduce the effectiveness of bioremediation strategies, especially when the contaminants are organic compounds or when organic compounds are added to promote microbial activities such as metal reduction. Genes indicative of phosphate-limitation were identified by microarray analysis of chemostat cultures of Geobacter sulfureducens. This analysis revealed that genes in the pst-pho operon, which is associated with a high-affinity phosphate uptake system in other microorganisms, had significantly higher transcript abundance under phosphate-limiting conditions, with the genes pstB and phoU upregulated the most. Quantitative PCR analysis of pstB and phoU transcript levels in G. sulfurreducens grown in chemostats demonstrated that the expression of these genes increased when phosphate was removed from the culture medium. Transcripts of pstB and phoU within the subsurface Geobacter species predominating during an in situ uranium-bioremediation field experiment were more abundant than in chemostat cultures of G. sulfurreducens that were not limited for phosphate. Addition of phosphate to incubations of subsurface sediments did not stimulate dissimilatory metal reduction. The added phosphate was rapidly adsorbed onto the sediments. The results demonstrate that Geobacter species can effectively reduce U(VI) even when experiencing suboptimal phosphate concentrations and that increasing phosphate availability with phosphate additions is difficult to achieve because of the high reactivity of this compound. This transcript-based approach developed for diagnosing phosphate limitation should be applicable to assessing the potential need for additional phosphate in other bioremediation processes.}, keywords = {Biodegradation, Environmental, Fresh Water, Gene Expression Regulation, Bacterial, Geobacter, Phosphates, Uranium, Water Pollutants}, issn = {1751-7370}, doi = {10.1038/ismej.2009.115}, author = {N{\textquoteright}guessan, Lucie A and Elifantz, Hila and Nevin, Kelly P and Mouser, Paula J and Meth{\'e}, Barbara and Woodard, Trevor L and Manley, Kimberly and Williams, Kenneth H and Wilkins, Michael J and Larsen, Joern T and Long, Philip E and Lovley, Derek R} } @article {459, title = {Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater.}, journal = {Environ Sci Technol}, volume = {43}, year = {2009}, month = {2009 Jun 15}, pages = {4386-92}, abstract = {The influence of ammonium availability on bacterial community structure and the physiological status of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by 2 orders of magnitude (< 4 to 400 microM) across th study site. Analysis of 16S rRNA sequences suggested that ammonium may have been one factor influencing the community composition prior to acetate amendment with Rhodoferax species predominating over Geobacter species with higher ammonium and Dechloromonas species dominating at the site with lowest ammonium. However, once acetate was added and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to acetate concentrations rather than ammonium levels. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium transporter gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during uranium reduction. The abundance of amtB was inversely correlated to ammonium levels, whereas nifD transcript levels were similar across all sites examined. These results suggest that nifD and amtB expression are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB transcript expression appears to be a useful approach for monitoring the nitrogen-related physiological status of subsurface Geobacter species. This study also emphasizes the need for more detailed analysis of geochemical and physiological interactions at the field scale in order to adequately model subsurface microbial processes during bioremediation.}, keywords = {Carrier Proteins, DNA, Bacterial, Environmental Remediation, Gene Expression Regulation, Bacterial, Gene Library, Geobacter, Nitrogen Fixation, Quaternary Ammonium Compounds, Time Factors, Uranium, Water, Water Pollutants, Radioactive}, issn = {0013-936X}, author = {Mouser, Paula J and N{\textquoteright}guessan, Lucie A and Elifantz, Hila and Holmes, Dawn E and Williams, Kenneth H and Wilkins, Michael J and Long, Philip E and Lovley, Derek R} } @article {457, title = {Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation.}, journal = {Appl Environ Microbiol}, volume = {75}, year = {2009}, month = {2009 Oct}, pages = {6591-9}, abstract = {Implementation of uranium bioremediation requires methods for monitoring the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here, we report a proteomics-based approach for simultaneously documenting the strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO, aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching liquid chromatography-tandem mass spectrometry spectra to peptides predicted from seven isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and Geobacter bemidjiensis-like strains and later possible emergence of M21 and G. bemidjiensis-like strains more closely related to Geobacter lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-coenzyme A and pyruvate for central metabolism, while abundant peptides matching tricarboxylic acid cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics-independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.}, keywords = {Amino Acid Sequence, Bacterial Proteins, Biodegradation, Environmental, Genomics, Geobacter, Molecular Sequence Data, Oxidation-Reduction, Peptide Mapping, Plankton, Proteomics, Uranium, Water Microbiology, Water Pollutants, Radioactive}, issn = {1098-5336}, doi = {10.1128/AEM.01064-09}, author = {Wilkins, Michael J and VerBerkmoes, Nathan C and Williams, Kenneth H and Callister, Stephen J and Mouser, Paula J and Elifantz, Hila and N{\textquoteright}guessan, Lucie A and Thomas, Brian C and Nicora, Carrie D and Shah, Manesh B and Abraham, Paul and Lipton, Mary S and Lovley, Derek R and Hettich, Robert L and Long, Philip E and Banfield, Jillian F} } @article {472, title = {Highly conserved genes in Geobacter species with expression patterns indicative of acetate limitation.}, journal = {Microbiology}, volume = {154}, year = {2008}, month = {2008 Sep}, pages = {2589-99}, abstract = {Analysis of the genome of Geobacter sulfurreducens revealed four genes encoding putative symporters with homology to ActP, an acetate transporter in Escherichia coli. Three of these genes, aplA, aplB and aplC, are highly similar (over 90 \% identical) and fell within a tight phylogenetic cluster (Group I) consisting entirely of Geobacter homologues. Transcript levels for all three genes increased in response to acetate limitation. The fourth gene, aplD, is phylogenetically distinct (Group II) and its expression was not influenced by acetate availability. Deletion of any one of the three genes in Group I did not significantly affect acetate-dependent growth, suggesting functional redundancy. Attempts to recover mutants in which various combinations of two of these genes were deleted were unsuccessful, suggesting that at least two of these three transporter genes are required to support growth. Closely related Group I apl genes were found in the genomes of other Geobacter species whose genome sequences are available. Furthermore, related genes could be detected in genomic DNA extracted from a subsurface environment undergoing in situ uranium bioremediation. The transporter genes recovered from the subsurface were most closely related to Group I apl genes found in the genomes of cultured Geobacter species that were isolated from contaminated subsurface environments. The increased expression of these genes in response to acetate limitation, their high degree of conservation among Geobacter species and the ease with which they can be detected in environmental samples suggest that Group I apl genes of the Geobacteraceae may be suitable biomarkers for acetate limitation. Monitoring the expression of these genes could aid in the design of strategies for acetate-mediated in situ bioremediation of uranium-contaminated groundwater.}, keywords = {Acetates, Biodegradation, Environmental, DNA, Bacterial, Escherichia coli, Escherichia coli Proteins, Gene Deletion, Gene Expression, Genes, Bacterial, Genome, Bacterial, Geobacter, Membrane Transport Proteins, Phylogeny, Uranium}, issn = {1350-0872}, doi = {10.1099/mic.0.2008/017244-0}, author = {Risso, Carla and Meth{\'e}, Barbara A and Elifantz, Hila and Holmes, Dawn E and Lovley, Derek R} }