@article {3098, title = {Genetic switches and related tools for controlling gene expression and electrical outputs of Geobacter sulfurreducens.}, journal = {J Ind Microbiol Biotechnol}, volume = {43}, year = {2016}, month = {2016 Nov}, pages = {1561-1575}, abstract = {

Physiological studies and biotechnology applications of Geobacter species have been limited by a lack of genetic tools. Therefore, potential additional molecular strategies for controlling metabolism were explored. When the gene for citrate synthase, or acetyl-CoA transferase, was placed under the control of a LacI/IPTG regulator/inducer system, cells grew on acetate only in the presence of IPTG. The TetR/AT system could also be used to control citrate synthase gene expression and acetate metabolism. A strain that required IPTG for growth on D-lactate was constructed by placing the gene for D-lactate dehydrogenase under the control of the LacI/IPTG system. D-Lactate served as an inducer in a strain in which a D-lactate responsive promoter and transcription repressor were used to control citrate synthase expression. Iron- and potassium-responsive systems were successfully incorporated to regulate citrate synthase expression and growth on acetate. Linking the appropriate degradation tags on the citrate synthase protein made it possible to control acetate metabolism with either the endogenous ClpXP or exogenous Lon protease and tag system. The ability to control current output from Geobacter biofilms and the construction of an AND logic gate for acetate metabolism suggested that the tools developed may be applicable for biosensor and biocomputing applications.

}, keywords = {Acetates, Acetyl Coenzyme A, Citrate (si)-Synthase, Electric Conductivity, Gene Expression Regulation, Geobacter, Isopropyl Thiogalactoside, L-Lactate Dehydrogenase, Lac Repressors, Promoter Regions, Genetic, Transferases}, issn = {1476-5535}, doi = {10.1007/s10295-016-1836-5}, author = {Ueki, Toshiyuki and Nevin, Kelly P and Woodard, Trevor L and Lovley, Derek R} } @article {3134, title = {Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange.}, journal = {Environ Microbiol Rep}, volume = {5}, year = {2013}, month = {2013 Dec}, pages = {904-10}, abstract = {

Direct interspecies electron transfer (DIET) through biological electrical connections is an alternative to interspecies H2 transfer as a mechanism for electron exchange in syntrophic cultures. However, it has not previously been determined whether electrons received via DIET yield energy to support cell growth. In order to investigate this, co-cultures of Geobacter metallireducens, which can transfer electrons to wild-type G. sulfurreducens via DIET, were established with a citrate synthase-deficient G. sulfurreducens strain that can receive electrons for respiration through DIET only. In a medium with ethanol as the electron donor and fumarate as the electron acceptor, co-cultures with the citrate synthase-deficient G. sulfurreducens strain metabolized ethanol as fast as co-cultures with wild-type, but the acetate that G. metallireducens generated from ethanol oxidation accumulated. The lack of acetate metabolism resulted in less fumarate reduction and lower cell abundance of G. sulfurreducens. RNAseq analysis of transcript abundance was consistent with a lack of acetate metabolism in G. sulfurreducens and revealed gene expression levels for the uptake hydrogenase, formate dehydrogenase, the pilus-associated c-type cytochrome OmcS and pili consistent with electron transfer via DIET. These results suggest that electrons transferred via DIET can serve as the sole energy source to support anaerobic respiration.

}, keywords = {Acetates, Anaerobiosis, Citrate (si)-Synthase, Cytochrome c Group, Electron Transport, Electrons, Energy Metabolism, Ethanol, Fimbriae, Bacterial, Formate Dehydrogenases, Fumarates, Geobacter, Oxidation-Reduction}, issn = {1758-2229}, doi = {10.1111/1758-2229.12093}, author = {Shrestha, Pravin Malla and Rotaru, Amelia-Elena and Aklujkar, Muktak and Liu, Fanghua and Shrestha, Minita and Summers, Zarath M and Malvankar, Nikhil and Flores, Dan Carlo and Lovley, Derek R} } @article {408, title = {Real-time spatial gene expression analysis within current-producing biofilms.}, journal = {ChemSusChem}, volume = {5}, year = {2012}, month = {2012 Jun}, pages = {1092-8}, abstract = {

The expression of genes involved in central metabolism and extracellular electron transfer was examined in real-time in current-producing anode biofilms of Geobacter sulfurreducens. Strains of G. sulfurreducens were generated, in which the expression of the gene for a short half-life fluorescent protein was placed under control of the promoter of the genes of interest. Anode biofilms were grown in a chamber that permitted direct examination of the cell fluorescence with confocal scanning laser microscopy. Studies on nifD and citrate synthase expression in response to environmental changes demonstrated that the reporter system revealed initiation and termination of gene transcription. Uniform expression throughout the biofilms was noted for the genes for citrate synthase; PilA, the structural protein of the conductive pili; and OmcZ, a c-type cytochrome essential for optimal current production, which was localized at the anode-biofilm interface. These results demonstrate that even cells at great distance from the anode, or within expected low-pH zones, are metabolically active and likely to contribute to current production and that there are factors other than gene expression differences influencing the distribution of OmcZ. This real-time reporter approach is likely to be a useful tool in optimizing the design of technologies relying on microbe-electrode interactions.

}, keywords = {Bacterial Proteins, Bioelectric Energy Sources, Biofilms, Citrate (si)-Synthase, Cytochrome c Group, Fimbriae Proteins, Fimbriae, Bacterial, Gene Expression Regulation, Bacterial, Geobacter, Quaternary Ammonium Compounds}, issn = {1864-564X}, doi = {10.1002/cssc.201100714}, author = {Franks, Ashley E and Glaven, Richard H and Lovley, Derek R} } @article {426, title = {Development of a biomarker for Geobacter activity and strain composition; proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI).}, journal = {Microb Biotechnol}, volume = {4}, year = {2011}, month = {2011 Jan}, pages = {55-63}, abstract = {Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the US Department of Energy{\textquoteright}s Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.}, keywords = {Amino Acid Sequence, Bacterial Proteins, Biodegradation, Environmental, Biological Markers, Citrate (si)-Synthase, Geobacter, Groundwater, Molecular Sequence Data, Phylogeny, Proteomics, Sequence Alignment, Uranium}, issn = {1751-7915}, doi = {10.1111/j.1751-7915.2010.00194.x}, author = {Wilkins, Michael J and Callister, Stephen J and Miletto, Marzia and Williams, Kenneth H and Nicora, Carrie D and Lovley, Derek R and Long, Philip E and Lipton, Mary S} } @article {452, title = {Genome-wide gene regulation of biosynthesis and energy generation by a novel transcriptional repressor in Geobacter species.}, journal = {Nucleic Acids Res}, volume = {38}, year = {2010}, month = {2010 Jan}, pages = {810-21}, abstract = {Geobacter species play important roles in bioremediation of contaminated environments and in electricity production from waste organic matter in microbial fuel cells. To better understand physiology of Geobacter species, expression and function of citrate synthase, a key enzyme in the TCA cycle that is important for organic acid oxidation in Geobacter species, was investigated. Geobacter sulfurreducens did not require citrate synthase for growth with hydrogen as the electron donor and fumarate as the electron acceptor. Expression of the citrate synthase gene, gltA, was repressed by a transcription factor under this growth condition. Functional and comparative genomics approaches, coupled with genetic and biochemical assays, identified a novel transcription factor termed HgtR that acts as a repressor for gltA. Further analysis revealed that HgtR is a global regulator for genes involved in biosynthesis and energy generation in Geobacter species. The hgtR gene was essential for growth with hydrogen, during which hgtR expression was induced. These findings provide important new insights into the mechanisms by which Geobacter species regulate their central metabolism under different environmental conditions.}, keywords = {Bacterial Proteins, Base Sequence, Citrate (si)-Synthase, Gene Expression Regulation, Bacterial, Genome, Bacterial, Geobacter, Molecular Sequence Data, Promoter Regions, Genetic, Repressor Proteins, Transcription, Genetic}, issn = {1362-4962}, doi = {10.1093/nar/gkp1085}, author = {Ueki, Toshiyuki and Lovley, Derek R} } @article {533, title = {Characterization of citrate synthase from Geobacter sulfurreducens and evidence for a family of citrate synthases similar to those of eukaryotes throughout the Geobacteraceae.}, journal = {Appl Environ Microbiol}, volume = {71}, year = {2005}, month = {2005 Jul}, pages = {3858-65}, abstract = {Members of the family Geobacteraceae are commonly the predominant Fe(III)-reducing microorganisms in sedimentary environments, as well as on the surface of energy-harvesting electrodes, and are able to effectively couple the oxidation of acetate to the reduction of external electron acceptors. Citrate synthase activity of these organisms is of interest due to its key role in acetate metabolism. Prior sequencing of the genome of Geobacter sulfurreducens revealed a putative citrate synthase sequence related to the citrate synthases of eukaryotes. All citrate synthase activity in G. sulfurreducens could be resolved to a single 49-kDa protein via affinity chromatography. The enzyme was successfully expressed at high levels in Escherichia coli with similar properties as the native enzyme, and kinetic parameters were comparable to related citrate synthases (kcat= 8.3 s(-1); Km= 14.1 and 4.3 microM for acetyl coenzyme A and oxaloacetate, respectively). The enzyme was dimeric and was slightly inhibited by ATP (Ki= 1.9 mM for acetyl coenzyme A), which is a known inhibitor for many eukaryotic, dimeric citrate synthases. NADH, an allosteric inhibitor of prokaryotic hexameric citrate synthases, did not affect enzyme activity. Unlike most prokaryotic dimeric citrate synthases, the enzyme did not have any methylcitrate synthase activity. A unique feature of the enzyme, in contrast to citrate synthases from both eukaryotes and prokaryotes, was a lack of stimulation by K+ ions. Similar citrate synthase sequences were detected in a diversity of other Geobacteraceae members. This first characterization of a eukaryotic-like citrate synthase from a prokaryote provides new insight into acetate metabolism in Geobacteraceae members and suggests a molecular target for tracking the presence and activity of these organisms in the environment.}, keywords = {Amino Acid Sequence, Citrate (si)-Synthase, Culture Media, Deltaproteobacteria, DNA, Bacterial, Eukaryotic Cells, Geobacter, Kinetics, Molecular Sequence Data, Phylogeny, Sequence Analysis, DNA}, issn = {0099-2240}, doi = {10.1128/AEM.71.7.3858-3865.2005}, author = {Bond, Daniel R and Mester, T{\"u}nde and Nesb{\o}, Camilla L and Izquierdo-Lopez, Andrea V and Collart, Frank L and Lovley, Derek R} } @article {529, title = {Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes.}, journal = {Appl Environ Microbiol}, volume = {71}, year = {2005}, month = {2005 Nov}, pages = {6870-7}, abstract = {The Geobacteraceae citrate synthase is phylogenetically distinct from those of other prokaryotes and is a key enzyme in the central metabolism of Geobacteraceae. Therefore, the potential for using levels of citrate synthase mRNA to estimate rates of Geobacter metabolism was evaluated in pure culture studies and in four different Geobacteraceae-dominated environments. Quantitative reverse transcription-PCR studies with mRNA extracted from cultures of Geobacter sulfurreducens grown in chemostats with Fe(III) as the electron acceptor or in batch with electrodes as the electron acceptor indicated that transcript levels of the citrate synthase gene, gltA, increased with increased rates of growth/Fe(III) reduction or current production, whereas the expression of the constitutively expressed housekeeping genes recA, rpoD, and proC remained relatively constant. Analysis of mRNA extracted from groundwater collected from a U(VI)-contaminated site undergoing in situ uranium bioremediation revealed a remarkable correspondence between acetate levels in the groundwater and levels of transcripts of gltA. The expression of gltA was also significantly greater in RNA extracted from groundwater beneath a highway runoff recharge pool that was exposed to calcium magnesium acetate in June, when acetate concentrations were high, than in October, when the levels had significantly decreased. It was also possible to detect gltA transcripts on current-harvesting anodes deployed in freshwater sediments. These results suggest that it is possible to monitor the in situ metabolic rate of Geobacteraceae by tracking the expression of the citrate synthase gene.}, keywords = {Acetates, Citrate (si)-Synthase, Deltaproteobacteria, DNA, Ribosomal, Electrodes, Ferric Compounds, Fresh Water, Geobacter, Geologic Sediments, Petroleum, Phylogeny, RNA, Ribosomal, 16S, Uranium, Water Pollutants, Chemical, Water Pollutants, Radioactive}, issn = {0099-2240}, doi = {10.1128/AEM.71.11.6870-6877.2005}, author = {Holmes, Dawn E and Nevin, Kelly P and O{\textquoteright}Neil, Regina A and Ward, Joy E and Adams, Lorrie A and Woodard, Trevor L and Vrionis, Helen A and Lovley, Derek R} }