@article {1419, title = {Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest.}, journal = {ISME J}, volume = {8}, year = {2014}, month = {2014 Jul}, pages = {1548-50}, abstract = {

Understanding the interactions among microbial communities, plant communities and soil properties following deforestation could provide insights into the long-term effects of land-use change on ecosystem functions, and may help identify approaches that promote the recovery of degraded sites. We combined high-throughput sequencing of fungal rDNA and molecular barcoding of plant roots to estimate fungal and plant community composition in soil sampled across a chronosequence of deforestation. We found significant effects of land-use change on fungal community composition, which was more closely correlated to plant community composition than to changes in soil properties or geographic distance, providing evidence for strong links between above- and below-ground communities in tropical forests.

}, keywords = {Brazil, Conservation of Natural Resources, DNA Barcoding, Taxonomic, DNA, Fungal, DNA, Ribosomal, Ecosystem, Fungi, Phylogeny, Plant Roots, Soil Microbiology, Trees, Tropical Climate}, issn = {1751-7370}, doi = {10.1038/ismej.2013.253}, author = {Mueller, Rebecca C and Paula, Fabiana S and Mirza, Babur S and Rodrigues, Jorge L M and N{\"u}sslein, Klaus and Bohannan, Brendan J M} } @article {425, title = {A shift in the current: new applications and concepts for microbe-electrode electron exchange.}, journal = {Curr Opin Biotechnol}, volume = {22}, year = {2011}, month = {2011 Jun}, pages = {441-8}, abstract = {Perceived applications of microbe-electrode interactions are shifting from production of electric power to other technologies, some of which even consume current. Electrodes can serve as stable, long-term electron acceptors for contaminant-degrading microbes to promote rapid degradation of organic pollutants in anaerobic subsurface environments. Solar and other forms of renewable electrical energy can be used to provide electrons extracted from water to microorganisms on electrodes at suitably low potentials for a number of groundwater bioremediation applications as well as for the production of fuels and other organic compounds from carbon dioxide. The understanding of how microorganisms exchange electrons with electrodes has improved substantially and is expected to be helpful in optimizing practical applications of microbe-electrode interactions, as well as yielding insights into related natural environmental phenomena.}, keywords = {Bacteria, Biodegradation, Environmental, Biofuels, Carbon Dioxide, Electricity, Electrodes, Electrons, Environmental Pollutants, Fungi, Microbiological Phenomena, Organic Chemicals}, issn = {1879-0429}, doi = {10.1016/j.copbio.2011.01.009}, author = {Lovley, Derek R and Nevin, Kelly P} } @article {558, title = {Cleaning up with genomics: applying molecular biology to bioremediation.}, journal = {Nat Rev Microbiol}, volume = {1}, year = {2003}, month = {2003 Oct}, pages = {35-44}, abstract = {Bioremediation has the potential to restore contaminated environments inexpensively yet effectively, but a lack of information about the factors controlling the growth and metabolism of microorganisms in polluted environments often limits its implementation. However, rapid advances in the understanding of bioremediation are on the horizon. Researchers now have the ability to culture microorganisms that are important in bioremediation and can evaluate their physiology using a combination of genome-enabled experimental and modelling techniques. In addition, new environmental genomic techniques offer the possibility for similar studies on as-yet-uncultured organisms. Combining models that can predict the activity of microorganisms that are involved in bioremediation with existing geochemical and hydrological models should transform bioremediation from a largely empirical practice into a science.}, keywords = {Bacteria, Bacterial Physiological Phenomena, Biodegradation, Environmental, Ecology, Environmental Microbiology, Fungi, Genetic Vectors, Genome, Bacterial, Genome, Fungal, Genomics, Models, Biological, Molecular Biology}, issn = {1740-1526}, doi = {10.1038/nrmicro731}, author = {Lovley, Derek R} } @article {656, title = {Dissimilatory Fe(III) and Mn(IV) reduction.}, journal = {Microbiol Rev}, volume = {55}, year = {1991}, month = {1991 Jun}, pages = {259-87}, abstract = {The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process.}, keywords = {Bacteria, Electron Transport, Ferric Compounds, Fungi, Geological Phenomena, Geology, Manganese, Oxidation-Reduction, Soil Microbiology, Water Microbiology}, issn = {0146-0749}, author = {Lovley, D R} } @article {1723, title = {Ecological observation of the 137Cs-contamination in beef of animals from the southern-Bavarian area.}, journal = {Environ Qual Saf}, volume = {4}, year = {1975}, month = {1975}, pages = {24-36}, abstract = {

Certain climatic and edaphic conformations in the Bavarian sub-alpine mountains and in the Alps favor above all the development of a land utilization system and farm structures similar to those in the northern part of Scandinavia. In 1963/64, the years of the highest environmental contamination up to the present, we established in 600 beef samples from the round or shoulder of male and female cattle (mainly Highland cattle) close connections between the 137Cs-contamination of green crop and the long lastnig yearly precipitation quantities, as well as certain relations between the 137Cs-contamination of meat and differences in the feeding and keeping of the animals. During summer-seasons (April-October), beef of cattle from pastures with heavy rainfall (Alps) was contaiminated by 137Cs up to 15 times more than that of confined animals. Hereby the rate of 137Cs-contamination in the meat of grazing cattle was nearly proportional to the quantities of precipitation. When confined cattle were fed on pastures in autumn after harvesting for 2 to 3 weeks, a quick increase of 137Cs-contamination of the meat was caused within this time up to values which in this district were otherwise only observed in grazing cattle. The lower 137Cs-content in meat of cattle housed during the summer season is due to the more varied fodder, which is at that time less contaminated than green crop. During the winter season (November to March), the highest contaminations in the meat of confined (Bohemian Forest) or grazing cattle (Alps) was measured when the animals in these districts were almost exclusively fed with fodder from the own farmground or with leafy silage. The highest contamination was almost regularly noticed in January, February and March, as generally during these months the highly contaminated first cut hay is fed. Here the meat was often even more contaminated than that of grazing cattle. After the quick decrease of 137Cs in fallout noticed in the years 1964 and 1965, in 1965/66 a dependance in the 137Cs-contamination of beef on the methods of keeping and feeding could still be observed in only the extreme cases (Alps, Bavarian- and Bohemian Forest); though in general, meat of animals from districts with heavy rainfall was slightly more contaminated than meat of animals from regions with less precipitation.

}, keywords = {Animals, Cattle, Cesium Radioisotopes, Ecology, Food Contamination, Radioactive, Fungi, Germany, West, Hydrogen-Ion Concentration, Meat, Plants, Radioactive Pollutants, Soil, Soil Microbiology, Time Factors, Trees, Weather}, issn = {0300-824X}, author = {Kreuzer, W} }