@article {3143, title = {Fluctuations in species-level protein expression occur during element and nutrient cycling in the subsurface.}, journal = {PLoS One}, volume = {8}, year = {2013}, month = {2013}, pages = {e57819}, abstract = {

While microbial activities in environmental systems play a key role in the utilization and cycling of essential elements and compounds, microbial activity and growth frequently fluctuates in response to environmental stimuli and perturbations. To investigate these fluctuations within a saturated aquifer system, we monitored a carbon-stimulated in situ Geobacter population while iron reduction was occurring, using 16S rRNA abundances and high-resolution tandem mass spectrometry proteome measurements. Following carbon amendment, 16S rRNA analysis of temporally separated samples revealed the rapid enrichment of Geobacter-like environmental strains with strong similarity to G. bemidjiensis. Tandem mass spectrometry proteomics measurements suggest high carbon flux through Geobacter respiratory pathways, and the synthesis of anapleurotic four carbon compounds from acetyl-CoA via pyruvate ferredoxin oxidoreductase activity. Across a 40-day period where Fe(III) reduction was occurring, fluctuations in protein expression reflected changes in anabolic versus catabolic reactions, with increased levels of biosynthesis occurring soon after acetate arrival in the aquifer. In addition, localized shifts in nutrient limitation were inferred based on expression of nitrogenase enzymes and phosphate uptake proteins. These temporal data offer the first example of differing microbial protein expression associated with changing geochemical conditions in a subsurface environment.

}, keywords = {Biomass, Carbon, Environment, Gene Expression Regulation, Bacterial, Geobacter, Groundwater, Humic Substances, Iron, Oxidation-Reduction, Phosphates, Plankton, Proteomics, RNA, Ribosomal, 16S, Tandem Mass Spectrometry, Uranium, Vanadium, Water Microbiology}, issn = {1932-6203}, doi = {10.1371/journal.pone.0057819}, author = {Wilkins, Michael J and Wrighton, Kelly C and Nicora, Carrie D and Williams, Kenneth H and McCue, Lee Ann and Handley, Kim M and Miller, Chris S and Giloteaux, Ludovic and Montgomery, Alison P and Lovley, Derek R and Banfield, Jillian F and Long, Philip E and Lipton, Mary S} } @article {447, title = {Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate.}, journal = {Appl Environ Microbiol}, volume = {76}, year = {2010}, month = {2010 Apr}, pages = {2371-5}, abstract = {Deleting individual genes for outer surface c-type cytochromes in Geobacter sulfurreducens partially inhibited the reduction of humic substances and anthraquinone-2,6,-disulfonate. Complete inhibition was obtained only when five of these genes were simultaneously deleted, suggesting that diverse outer surface cytochromes can contribute to the reduction of humic substances and other extracellular quinones.}, keywords = {Anthraquinones, Bacterial Proteins, Cytochromes, Gene Deletion, Genes, Bacterial, Geobacter, Humic Substances, Oxidation-Reduction, Soil, Soil Microbiology}, issn = {1098-5336}, doi = {10.1128/AEM.02250-09}, author = {Voordeckers, James W and Kim, Byoung-Chan and Izallalen, Mounir and Lovley, Derek R} } @article {574, title = {Desulfitobacterium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds.}, journal = {Int J Syst Evol Microbiol}, volume = {52}, year = {2002}, month = {2002 Nov}, pages = {1929-35}, abstract = {Strain 853-15A(T) was enriched and isolated from uranium-contaminated aquifer sediment by its ability to grow under anaerobic conditions via the oxidation of lactate coupled to the reduction of anthraquinone-2,6-disulfonate (AQDS) to anthrahydroquinone-2,6-disulfonate (AHQDS). Lactate was oxidized incompletely to acetate and carbon dioxide according to the reaction CH3CHOHCOO(-)+ 2AQDS+H2O --> CH3COO(-)+ 2AHQDS+CO2. Additional electron donors utilized included formate, ethanol, butanol, butyrate, malate and pyruvate. Lactate also supported growth with Fe(III) citrate, Mn(IV) oxide, humic substances, elemental sulfur, 3-chloro-4-hydroxyphenylacetate, trichloroethylene or tetrachloroethylene serving as the electron acceptor. Growth was not observed with sulfate, sulfite, nitrate or fumarate as the terminal electron acceptor. The temperature optimum for growth was 30 degrees C, but growth was also observed at 20 and 37 degrees C. The pH optimum was approximately 7.0. The 16S rDNA sequence of strain 853-15A(T) suggested that it was most closely related to Desulfitobacterium dehalogenans and closely related to Desulfitobacterium chlororespirans and Desulfitobacterium frappieri. The phylogenetic and physiological properties exhibited by strain 853-15A(T) (= ATCC BAA-636(T)) place it within the genus Desulfitobacterium as the type strain of a novel species, Desulfitobacterium metallireducens sp. nov.}, keywords = {Anaerobiosis, DNA, Bacterial, DNA, Ribosomal, Ecosystem, Electron Transport, Geologic Sediments, Humic Substances, Metals, Microscopy, Electron, Molecular Sequence Data, Oxidation-Reduction, Peptococcaceae, Phenotype, Phylogeny, RNA, Bacterial, RNA, Ribosomal, 16S, Species Specificity}, issn = {1466-5026}, author = {Finneran, Kevin T and Forbush, Heather M and VanPraagh, Catherine V Gaw and Lovley, Derek R} } @article {585, title = {Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones.}, journal = {Environ Microbiol}, volume = {4}, year = {2002}, month = {2002 Feb}, pages = {115-24}, abstract = {Five methanogens (Methanosarcina barkeri MS, Methanosphaera cuniculi 1R7, Methanobacterium palustre F, Methanococcus voltaei A3 and Methanolobus vulcani PL-12/M) were investigated for their ability to reduce Fe(III) oxide and the soluble quinone anthraquinone-2,6-disulphonate (AQDS). Two species (M. barkeri and M. voltaei) reduced significant amounts of Fe(III) oxide using hydrogen as the electron donor, and 0.1 mM AQDS greatly accelerated Fe(III) reduction by these organisms. Although Fe(III) appeared to inhibit growth and methanogenesis of some strains, hydrogen partial pressures under donor-limited conditions were much lower (<0.5 Pa) in the presence of Fe(III) than in normal media (1-10 Pa) for all species except for M. vulcani. These results demonstrate that electrons were transferred to Fe(III) by hydrogen-utilizing methanogens even when growth and methanogenesis were inhibited. All species except the obligate methylotroph M. vulcani were able to reduce AQDS when their growth substrates were present as electron donors, and rates were highest when organisms used hydrogen as the electron donor. Purified soil humic acids could also be reduced by the AQDS-reducing methanogens. The ability of methanogens to interact with extracellular quinones, humic acids and Fe(III) oxides raises the possibility that this functional group of organ-isms contributes to Fe(III) and humic acid reduction under certain conditions in the environment and provides an alternative explanation for the inhibition of methanogenesis in some Fe(III)-containing ecosystems.}, keywords = {Anthraquinones, Euryarchaeota, Ferric Compounds, Humic Substances, Oxidation-Reduction, Species Specificity}, issn = {1462-2912}, author = {Bond, Daniel R and Lovley, Derek R} } @article {605, title = {Humics as an electron donor for anaerobic respiration.}, journal = {Environ Microbiol}, volume = {1}, year = {1999}, month = {1999 Feb}, pages = {89-98}, abstract = {The possibility that microorganisms might use reduced humic substances (humics) as an electron donor for the reduction of electron acceptors with a more positive redox potential was investigated. All of the Fe(III)- and humics-reducing microorganisms evaluated were capable of oxidizing reduced humics and/or the reduced humics analogue anthrahydroquinone-2,6,-disulphonate (AHODS), with nitrate and/or fumarate as the electron acceptor. These included Geobacter metallireducens, Geobacter sulphurreducens, Geothrix fermentans, Shewanella alga, Wolinella succinogenes and {\textquoteright}S. barnesii{\textquoteright}. Several of the humics-oxidizing microorganisms grew in medium with AHQDS as the sole electron donor and fumarate as the electron acceptor. Even though it does not reduce Fe(III) or humics, Paracoccus denitrificans could use AHQDS and reduced humics as electron donors for denitrification. However, another denitrifier, Pseudomonas denitrificans, could not. AHODS could also serve as an electron donor for selenate and arsenate reduction by W. succinogenes. Electron spin resonance studies demonstrated that humics oxidation was associated with the oxidation of hydroquinone moieties in the humics. Studies with G. metallireducens and W. succinogenes demonstrated that the anthraquinone-2,6-disulphonate (AQDS)/AHQDS redox couple mediated an interspecies electron transfer between the two organisms. These results suggest that, as microbially reduced humics enter less reduced zones of soils and sediments, the reduced humics may serve as electron donors for microbial reduction of several environmentally significant electron acceptors.}, keywords = {Aerobiosis, Anaerobiosis, Anthraquinones, Arsenates, Bacteria, Electron Transport, Fumarates, Humic Substances, Selenium Compounds, Tumor Cells, Cultured}, issn = {1462-2912}, author = {Lovley, D R and Fraga, J L and Coates, J D and Blunt-Harris, E L} } @article {617, title = {Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction.}, journal = {Appl Environ Microbiol}, volume = {65}, year = {1999}, month = {1999 Sep}, pages = {4252-4}, abstract = {The dissimilatory Fe(III) reducer Geobacter metallireducens reduced Fe(III) bound in humic substances, but the concentrations of Fe(III) in a wide range of highly purified humic substances were too low to account for a significant portion of the electron-accepting capacities of the humic substances. Furthermore, once reduced, the iron in humic substances could not transfer electrons to Fe(III) oxide. These results suggest that other electron-accepting moieties in humic substances, such as quinones, are the important electron-accepting and shuttling agents under Fe(III)-reducing conditions.}, keywords = {Deltaproteobacteria, Electron Transport, Ferric Compounds, Humic Substances, Iron, Oxidation-Reduction}, issn = {0099-2240}, author = {Lovley, D R and Blunt-Harris, E L} } @article {622, title = {Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene.}, journal = {Appl Environ Microbiol}, volume = {64}, year = {1998}, month = {1998 Aug}, pages = {3102-5}, abstract = {Anaerobic oxidation of [1,2-14C]vinyl chloride and [1, 2-14C]dichloroethene to 14CO2 under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought.}, keywords = {Aerobiosis, Anaerobiosis, Bacteria, Biodegradation, Environmental, Geologic Sediments, Humic Substances, Oxidation-Reduction, Vinyl Chloride, Water Microbiology, Water Pollutants}, issn = {0099-2240}, author = {Bradley, P M and Chapelle, F H and Lovley, D R} } @article {625, title = {Recovery of humic-reducing bacteria from a diversity of environments.}, journal = {Appl Environ Microbiol}, volume = {64}, year = {1998}, month = {1998 Apr}, pages = {1504-9}, abstract = {To evaluate which microorganisms might be responsible for microbial reduction of humic substances in sedimentary environments, humic-reducing bacteria were isolated from a variety of sediment types. These included lake sediments, pristine and contaminated wetland sediments, and marine sediments. In each of the sediment types, all of the humic reducers recovered with acetate as the electron donor and the humic substance analog, 2,6-anthraquinone disulfonate (AQDS), as the electron acceptor were members of the family Geobacteraceae. This was true whether the AQDS-reducing bacteria were enriched prior to isolation on solid media or were recovered from the highest positive dilutions of sediments in liquid media. All of the isolates tested not only conserved energy to support growth from acetate oxidation coupled to AQDS reduction but also could oxidize acetate with highly purified soil humic acids as the sole electron acceptor. All of the isolates tested were also able to grow with Fe(III) serving as the sole electron acceptor. This is consistent with previous studies that have suggested that the capacity for Fe(III) reduction is a common feature of all members of the Geobacteraceae. These studies demonstrate that the potential for microbial humic substance reduction can be found in a wide variety of sediment types and suggest that Geobacteraceae species might be important humic-reducing organisms in sediments.}, keywords = {Acetic Acid, Anthraquinones, Base Sequence, DNA Primers, Electron Transport, Fresh Water, Gram-Negative Anaerobic Bacteria, Humic Substances, Iron, Molecular Sequence Data, Phylogeny, Polymerase Chain Reaction, RNA, Bacterial, RNA, Ribosomal, 16S, Seawater, Sulfur-Reducing Bacteria, Water Microbiology}, issn = {0099-2240}, author = {Coates, J D and Ellis, D J and Blunt-Harris, E L and Gaw, C V and Roden, E E and Lovley, D R} }