@article {1418, title = {Easy come easy go: surfaces containing immobilized nanoparticles or isolated polycation chains facilitate removal of captured Staphylococcus aureus by retarding bacterial bond maturation.}, journal = {ACS Nano}, volume = {8}, year = {2014}, month = {2014 Feb 25}, pages = {1180-90}, abstract = {

Adhesion of bacteria is a key step in the functioning of antimicrobial surfaces or certain types of on-line sensors. The subsequent removal of these bacteria, within a \∼ 10-30 min time frame, is equally important but complicated by the tendency of bacterial adhesion to strengthen within minutes of initial capture. This study uses Staphylococcus aureus as a model bacterium to demonstrate the general strategy of clustering adhesive surface functionality (at length scales smaller than the bacteria themselves) on otherwise nonadhesive surfaces to capture and retain bacteria (easy come) while limiting the progressive strengthening of adhesion. The loose attachment facilitates bacteria removal by moderate shearing flow (easy go). This strategy is demonstrated using surfaces containing sparsely and randomly arranged immobilized amine-functionalized nanoparticles or poly-l-lysine chains, about 10 nm in size. The rest of the surface is backfilled with a nonadhesive polyethylene glycol (PEG) brush that, by itself, repels S. aureus. The nanoparticles or polymer chains cluster cationic functionality, providing small regions that attract negatively charged S. aureus cells. Compared with surfaces of nearly uniform cationic character where S. aureus adhesion quickly becomes strong (on a time scale less than 5 min), placement of cationic charge in small clusters retards or prevents processes that increase bacteria adhesion on a time scale of \∼ 30 min, providing \"easy go\" surfaces.

}, keywords = {Nanoparticles, Polyamines, Staphylococcus aureus, Surface Properties}, issn = {1936-086X}, doi = {10.1021/nn405845y}, author = {Fang, Bing and Jiang, Ying and Rotello, Vincent M and N{\"u}sslein, Klaus and Santore, Maria M} } @article {487, title = {Electricity generation by Geobacter sulfurreducens attached to gold electrodes.}, journal = {Langmuir}, volume = {24}, year = {2008}, month = {2008 Apr 15}, pages = {4376-9}, abstract = {The versatility of gold for electrode manufacture suggests that it could be an ideal material for some microbial fuel cell applications. However, previous studies have suggested that microorganisms that readily transfer electrons to graphite do not transfer electrons to gold. Investigations with Geobacter sulfurreducens demonstrated that it could grow on gold anodes producing current nearly as effectively as with graphite anodes. Current production was associated with the development of G. sulfurreducens biofilms up to 40 microm thick. No current was produced if pilA, the gene for the structural protein of the conductive pili of G. sulfurreducens, was deleted. The finding that gold is a suitable anode material for microbial fuel cells offers expanded possibilities for the construction of microbial fuel cells and the electrochemical analysis of microbe-electrode interactions.}, keywords = {Electrodes, Electrons, Geobacter, Gold, Microscopy, Confocal, Microscopy, Electron, Scanning, Surface Properties}, issn = {0743-7463}, doi = {10.1021/la703469y}, author = {Richter, Hanno and McCarthy, Kevin and Nevin, Kelly P and Johnson, Jessica P and Rotello, Vincent M and Lovley, Derek R} }