@article {3047, title = {Genetic Manipulation of Desulfovibrio ferrophilus and Evaluation of Fe(III) Oxide Reduction Mechanisms.}, journal = {Microbiol Spectr}, volume = {10}, year = {2022}, month = {2022 Dec 21}, pages = {e0392222}, abstract = {

The sulfate-reducing microbe Desulfovibrio ferrophilus is of interest due to its relatively rare ability to also grow with Fe(III) oxide as an electron acceptor and its rapid corrosion of metallic iron. Previous studies have suggested multiple agents for extracellular electron exchange including a soluble electron shuttle, electrically conductive pili, and outer surface multiheme -type cytochromes. However, the previous lack of a strategy for genetic manipulation of limited mechanistic investigations. We developed an electroporation-mediated transformation method that enabled replacement of genes of interest with an antibiotic resistance gene via double-crossover homologous recombination. Genes were identified that are essential for flagellum-based motility and the expression of the two types of pili. Disrupting flagellum-based motility or expression of either of the two pili did not inhibit Fe(III) oxide reduction, nor did deleting genes for multiheme -type cytochromes predicted to be associated with the outer membrane. Although redundancies in cytochrome or pilus function might explain some of these phenotypes, overall, the results are consistent with primarily reducing Fe(III) oxide via an electron shuttle. The finding that is genetically tractable not only will aid in elucidating further details of its mechanisms for Fe(III) oxide reduction but also provides a new experimental approach for developing a better understanding of some of its other unique features, such as the ability to corrode metallic iron at high rates and accept electrons from negatively poised electrodes. is an important pure culture model for Fe(III) oxide reduction and the corrosion of iron-containing metals in anaerobic marine environments. This study demonstrates that is genetically tractable, an important advance for elucidating the mechanisms by which it interacts with extracellular electron acceptors and donors. The results demonstrate that there is not one specific outer surface multiheme -type cytochrome that is essential for Fe(III) oxide reduction. This finding, coupled with the lack of apparent porin-cytochrome conduits encoded in the genome and the finding that deleting genes for pilus and flagellum expression did not inhibit Fe(III) oxide reduction, suggests that has adopted strategies for extracellular electron exchange that are different from those of intensively studied electroactive microbes like and species. Thus, the ability to genetically manipulate is likely to lead to new mechanistic concepts in electromicrobiology.

}, keywords = {Cytochromes, Electron Transport, Ferric Compounds, Iron, Oxidation-Reduction, Oxides}, issn = {2165-0497}, doi = {10.1128/spectrum.03922-22}, author = {Ueki, Toshiyuki and Woodard, Trevor L and Lovley, Derek R} } @article {3057, title = {Generation of High Current Densities in Geobacter sulfurreducens Lacking the Putative Gene for the PilB Pilus Assembly Motor.}, journal = {Microbiol Spectr}, volume = {9}, year = {2021}, month = {2021 Oct 31}, pages = {e0087721}, abstract = {

Geobacter sulfurreducens is commonly employed as a model for the study of extracellular electron transport mechanisms in the species. Deletion of , which is known to encode the pilus assembly motor protein for type IV pili in other bacteria, has been proposed as an effective strategy for evaluating the role of electrically conductive pili (e-pili) in G. sulfurreducens extracellular electron transfer. In those studies, the inhibition of e-pili expression associated with deletion was not demonstrated directly but was inferred from the observation that deletion mutants produced lower current densities than wild-type cells. Here, we report that deleting did not diminish current production. Conducting probe atomic force microscopy revealed filaments with the same diameter and similar current-voltage response as e-pili harvested from wild-type G. sulfurreducens or when e-pili are expressed heterologously from the G. sulfurreducens pilin gene in Escherichia coli. Immunogold labeling demonstrated that a G. sulfurreducens strain expressing a pilin monomer with a His tag continued to express His tag-labeled filaments when was deleted. These results suggest that a reinterpretation of the results of previous studies on G. sulfurreducens deletion strains may be necessary. Geobacter sulfurreducens is a model microbe for the study of biogeochemically and technologically significant processes, such as the reduction of Fe(III) oxides in soils and sediments, bioelectrochemical applications that produce electric current from waste organic matter or drive useful processes with the consumption of renewable electricity, direct interspecies electron transfer in anaerobic digestors and methanogenic soils and sediments, and metal corrosion. Elucidating the phenotypes associated with gene deletions is an important strategy for determining the mechanisms for extracellular electron transfer in G. sulfurreducens. The results reported here demonstrate that we cannot replicate the key phenotype reported for a gene deletion that has been central to the development of models for long-range electron transport in G. sulfurreducens.

}, keywords = {Bacterial Proteins, Electric Conductivity, Electron Transport, Fimbriae Proteins, Fimbriae, Bacterial, Gene Deletion, Geobacter, Geologic Sediments, Microscopy, Atomic Force, Oxidoreductases}, issn = {2165-0497}, doi = {10.1128/Spectrum.00877-21}, author = {Ueki, Toshiyuki and Walker, David J F and Nevin, Kelly P and Ward, Joy E and Woodard, Trevor L and Nonnenmann, Stephen S and Lovley, Derek R} } @article {3098, title = {Genetic switches and related tools for controlling gene expression and electrical outputs of Geobacter sulfurreducens.}, journal = {J Ind Microbiol Biotechnol}, volume = {43}, year = {2016}, month = {2016 Nov}, pages = {1561-1575}, abstract = {

Physiological studies and biotechnology applications of Geobacter species have been limited by a lack of genetic tools. Therefore, potential additional molecular strategies for controlling metabolism were explored. When the gene for citrate synthase, or acetyl-CoA transferase, was placed under the control of a LacI/IPTG regulator/inducer system, cells grew on acetate only in the presence of IPTG. The TetR/AT system could also be used to control citrate synthase gene expression and acetate metabolism. A strain that required IPTG for growth on D-lactate was constructed by placing the gene for D-lactate dehydrogenase under the control of the LacI/IPTG system. D-Lactate served as an inducer in a strain in which a D-lactate responsive promoter and transcription repressor were used to control citrate synthase expression. Iron- and potassium-responsive systems were successfully incorporated to regulate citrate synthase expression and growth on acetate. Linking the appropriate degradation tags on the citrate synthase protein made it possible to control acetate metabolism with either the endogenous ClpXP or exogenous Lon protease and tag system. The ability to control current output from Geobacter biofilms and the construction of an AND logic gate for acetate metabolism suggested that the tools developed may be applicable for biosensor and biocomputing applications.

}, keywords = {Acetates, Acetyl Coenzyme A, Citrate (si)-Synthase, Electric Conductivity, Gene Expression Regulation, Geobacter, Isopropyl Thiogalactoside, L-Lactate Dehydrogenase, Lac Repressors, Promoter Regions, Genetic, Transferases}, issn = {1476-5535}, doi = {10.1007/s10295-016-1836-5}, author = {Ueki, Toshiyuki and Nevin, Kelly P and Woodard, Trevor L and Lovley, Derek R} } @article {3150, title = {A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen.}, journal = {Appl Environ Microbiol}, volume = {79}, year = {2013}, month = {2013 Feb}, pages = {1102-9}, abstract = {

Methods for genetic manipulation of Clostridium ljungdahlii are of interest because of the potential for production of fuels and other biocommodities from carbon dioxide via microbial electrosynthesis or more traditional modes of autotrophy with hydrogen or carbon monoxide as the electron donor. Furthermore, acetogenesis plays an important role in the global carbon cycle. Gene deletion strategies required for physiological studies of C. ljungdahlii have not previously been demonstrated. An electroporation procedure for introducing plasmids was optimized, and four different replicative origins for plasmid propagation in C. ljungdahlii were identified. Chromosomal gene deletion via double-crossover homologous recombination with a suicide vector was demonstrated initially with deletion of the gene for FliA, a putative sigma factor involved in flagellar biogenesis and motility in C. ljungdahlii. Deletion of fliA yielded a strain that lacked flagella and was not motile. To evaluate the potential utility of gene deletions for functional genomic studies and to redirect carbon and electron flow, the genes for the putative bifunctional aldehyde/alcohol dehydrogenases, adhE1 and adhE2, were deleted individually or together. Deletion of adhE1, but not adhE2, diminished ethanol production with a corresponding carbon recovery in acetate. The double deletion mutant had a phenotype similar to that of the adhE1-deficient strain. Expression of adhE1 in trans partially restored the capacity for ethanol production. These results demonstrate the feasibility of genetic investigations of acetogen physiology and the potential for genetic manipulation of C. ljungdahlii to optimize autotrophic biocommodity production.

}, keywords = {Clostridium, Electroporation, Gene Deletion, Genetic Complementation Test, Genetic Vectors, Genetics, Microbial, Metabolic Engineering, Molecular Biology, Plasmids, Transformation, Bacterial}, issn = {1098-5336}, doi = {10.1128/AEM.02891-12}, author = {Leang, Ching and Ueki, Toshiyuki and Nevin, Kelly P and Lovley, Derek R} } @article {415, title = {Geobacter: the microbe electric{\textquoteright}s physiology, ecology, and practical applications.}, journal = {Adv Microb Physiol}, volume = {59}, year = {2011}, month = {2011}, pages = {1-100}, abstract = {Geobacter species specialize in making electrical contacts with extracellular electron acceptors and other organisms. This permits Geobacter species to fill important niches in a diversity of anaerobic environments. Geobacter species appear to be the primary agents for coupling the oxidation of organic compounds to the reduction of insoluble Fe(III) and Mn(IV) oxides in many soils and sediments, a process of global biogeochemical significance. Some Geobacter species can anaerobically oxidize aromatic hydrocarbons and play an important role in aromatic hydrocarbon removal from contaminated aquifers. The ability of Geobacter species to reductively precipitate uranium and related contaminants has led to the development of bioremediation strategies for contaminated environments. Geobacter species produce higher current densities than any other known organism in microbial fuel cells and are common colonizers of electrodes harvesting electricity from organic wastes and aquatic sediments. Direct interspecies electron exchange between Geobacter species and syntrophic partners appears to be an important process in anaerobic wastewater digesters. Functional and comparative genomic studies have begun to reveal important aspects of Geobacter physiology and regulation, but much remains unexplored. Quantifying key gene transcripts and proteins of subsurface Geobacter communities has proven to be a powerful approach to diagnose the in situ physiological status of Geobacter species during groundwater bioremediation. The growth and activity of Geobacter species in the subsurface and their biogeochemical impact under different environmental conditions can be predicted with a systems biology approach in which genome-scale metabolic models are coupled with appropriate physical/chemical models. The proficiency of Geobacter species in transferring electrons to insoluble minerals, electrodes, and possibly other microorganisms can be attributed to their unique "microbial nanowires," pili that conduct electrons along their length with metallic-like conductivity. Surprisingly, the abundant c-type cytochromes of Geobacter species do not contribute to this long-range electron transport, but cytochromes are important for making the terminal electrical connections with Fe(III) oxides and electrodes and also function as capacitors, storing charge to permit continued respiration when extracellular electron acceptors are temporarily unavailable. The high conductivity of Geobacter pili and biofilms and the ability of biofilms to function as supercapacitors are novel properties that might contribute to the field of bioelectronics. The study of Geobacter species has revealed a remarkable number of microbial physiological properties that had not previously been described in any microorganism. Further investigation of these environmentally relevant and physiologically unique organisms is warranted.}, keywords = {Biotechnology, Ecology, Environmental Remediation, Ferric Compounds, Geobacter}, issn = {0065-2911}, doi = {10.1016/B978-0-12-387661-4.00004-5}, author = {Lovley, Derek R and Ueki, Toshiyuki and Zhang, Tian and Malvankar, Nikhil S and Shrestha, Pravin M and Flanagan, Kelly A and Aklujkar, Muktak and Butler, Jessica E and Giloteaux, Ludovic and Rotaru, Amelia-Elena and Holmes, Dawn E and Franks, Ashley E and Orellana, Roberto and Risso, Carla and Nevin, Kelly P} } @article {452, title = {Genome-wide gene regulation of biosynthesis and energy generation by a novel transcriptional repressor in Geobacter species.}, journal = {Nucleic Acids Res}, volume = {38}, year = {2010}, month = {2010 Jan}, pages = {810-21}, abstract = {Geobacter species play important roles in bioremediation of contaminated environments and in electricity production from waste organic matter in microbial fuel cells. To better understand physiology of Geobacter species, expression and function of citrate synthase, a key enzyme in the TCA cycle that is important for organic acid oxidation in Geobacter species, was investigated. Geobacter sulfurreducens did not require citrate synthase for growth with hydrogen as the electron donor and fumarate as the electron acceptor. Expression of the citrate synthase gene, gltA, was repressed by a transcription factor under this growth condition. Functional and comparative genomics approaches, coupled with genetic and biochemical assays, identified a novel transcription factor termed HgtR that acts as a repressor for gltA. Further analysis revealed that HgtR is a global regulator for genes involved in biosynthesis and energy generation in Geobacter species. The hgtR gene was essential for growth with hydrogen, during which hgtR expression was induced. These findings provide important new insights into the mechanisms by which Geobacter species regulate their central metabolism under different environmental conditions.}, keywords = {Bacterial Proteins, Base Sequence, Citrate (si)-Synthase, Gene Expression Regulation, Bacterial, Genome, Bacterial, Geobacter, Molecular Sequence Data, Promoter Regions, Genetic, Repressor Proteins, Transcription, Genetic}, issn = {1362-4962}, doi = {10.1093/nar/gkp1085}, author = {Ueki, Toshiyuki and Lovley, Derek R} } @article {436, title = {Genome-wide survey for PilR recognition sites of the metal-reducing prokaryote Geobacter sulfurreducens.}, journal = {Gene}, volume = {469}, year = {2010}, month = {2010 Dec 1}, pages = {31-44}, abstract = {Geobacter sulfurreducens is a species from the bacterial family Geobacteraceae, members of which participate in bioenergy production and in environmental bioremediation. G. sulfurreducens pili are electrically conductive and are required for Fe(III) oxide reduction and for optimal current production in microbial fuel cells. PilR is an enhancer binding protein, which is an activator acting together with the alternative sigma factor, RpoN, in transcriptional regulation. Both RpoN and PilR are involved in regulation of expression of the pilA gene, whose product is pilin, a structural component of a pilus. Using bioinformatic approaches, we predicted G. sulfurreducens sequence elements that are likely to be regulated by PilR. The functional importance of the genome region containing a PilR binding site predicted upstream of the pilA gene was experimentally validated. The predicted G. sulfurreducens PilR binding sites are similar to PilR binding sites of Pseudomonas and Moraxella. While the number of predicted PilR-regulated sites did not deviate from that expected by chance, multiple sites were predicted upstream of genes with roles in biosynthesis and function of pili and flagella, in secretory pathways, and in cell wall biogenesis, suggesting the possible involvement of G. sulfurreducens PilR in regulation of production and assembly of pili and flagella.}, keywords = {Bacterial Proteins, Base Sequence, Binding Sites, Conserved Sequence, Ferric Compounds, Fimbriae Proteins, Gene Expression Regulation, Bacterial, Genome, Bacterial, Geobacter, Molecular Sequence Data, Promoter Regions, Genetic, Transcription Factors, Transcription, Genetic}, issn = {1879-0038}, doi = {10.1016/j.gene.2010.08.005}, author = {Krushkal, Julia and Ju{\'a}rez, Katy and Barbe, Jose F and Qu, Yanhua and Andrade, Angel and Puljic, Marko and Adkins, Ronald M and Lovley, Derek R and Ueki, Toshiyuki} } @article {458, title = {Genome-wide analysis of the RpoN regulon in Geobacter sulfurreducens.}, journal = {BMC Genomics}, volume = {10}, year = {2009}, month = {2009}, pages = {331}, abstract = {BACKGROUND: The role of the RNA polymerase sigma factor RpoN in regulation of gene expression in Geobacter sulfurreducens was investigated to better understand transcriptional regulatory networks as part of an effort to develop regulatory modules for genome-scale in silico models, which can predict the physiological responses of Geobacter species during groundwater bioremediation or electricity production. RESULTS: An rpoN deletion mutant could not be obtained under all conditions tested. In order to investigate the regulon of the G. sulfurreducens RpoN, an RpoN over-expression strain was made in which an extra copy of the rpoN gene was under the control of a taclac promoter. Combining both the microarray transcriptome analysis and the computational prediction revealed that the G. sulfurreducens RpoN controls genes involved in a wide range of cellular functions. Most importantly, RpoN controls the expression of the dcuB gene encoding the fumarate/succinate exchanger, which is essential for cell growth with fumarate as the terminal electron acceptor in G. sulfurreducens. RpoN also controls genes, which encode enzymes for both pathways of ammonia assimilation that is predicted to be essential under all growth conditions in G. sulfurreducens. Other genes that were identified as part of the RpoN regulon using either the computational prediction or the microarray transcriptome analysis included genes involved in flagella biosynthesis, pili biosynthesis and genes involved in central metabolism enzymes and cytochromes involved in extracellular electron transfer to Fe(III), which are known to be important for growth in subsurface environment or electricity production in microbial fuel cells. The consensus sequence for the predicted RpoN-regulated promoter elements is TTGGCACGGTTTTTGCT. CONCLUSION: The G. sulfurreducens RpoN is an essential sigma factor and a global regulator involved in a complex transcriptional network controlling a variety of cellular processes.}, keywords = {Bacterial Proteins, DNA, Bacterial, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Genome-Wide Association Study, Geobacter, Multigene Family, Oligonucleotide Array Sequence Analysis, Promoter Regions, Genetic, Regulon, RNA Polymerase Sigma 54}, issn = {1471-2164}, doi = {10.1186/1471-2164-10-331}, author = {Leang, Ching and Krushkal, Julia and Ueki, Toshiyuki and Puljic, Marko and Sun, Jun and Ju{\'a}rez, Katy and N{\'u}{\~n}ez, Cinthia and Reguera, Gemma and DiDonato, Raymond and Postier, Bradley and Adkins, Ronald M and Lovley, Derek R} }