Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment.

TitleAnaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment.
Publication TypeJournal Article
Year of Publication2002
AuthorsRothermich MM, Hayes LA, Lovley DR
JournalEnviron Sci Technol
Date Published2002 Nov 15
KeywordsBacteria, Anaerobic, Biodegradation, Environmental, Environmental Monitoring, Geologic Sediments, Molecular Weight, Petroleum, Polycyclic Hydrocarbons, Aromatic, Ships, Sulfur-Reducing Bacteria, Transportation, Water Pollutants, Chemical

It has previously been demonstrated that [14C]-labeled polycyclic aromatic hydrocarbons (PAHs) can be oxidized to 14CO2 in anoxic, PAH-contaminated, marine harbor sediments in which sulfate reduction is the terminal electron-accepting process. However, it has not previously been determined whether this degradation of [14C]-PAHs accurately reflects the degradation of the in situ pools of contaminant PAHs. In coal tar-contaminated sediments from Boston Harbor, [14C]-naphthalene was readily oxidized to 14CO2, but, after 95 d of incubation under anaerobic conditions, there was no significant decrease in the detectable pool of in situ naphthalene in these sediments. Therefore, to better evaluate the anaerobic biodegradation of the in situ PAH pools, the concentrations of these contaminants were monitored for ca. 1 year during which the sediments were incubated under conditions that mimicked those found in situ. There was loss of all of the PAHs that were monitored (2-5 ring congeners), including high molecular weight PAHs, such as benzo[a]pyrene, that have not previously been shown to be degraded under anaerobic conditions. There was no significant change in the PAH levels in the sediments amended with molybdate to inhibit sulfate-reducing bacteria or in sediments in which all microorganisms had been killed with glutaraldehyde. In some instances, over half of the detectable pools of in situ 2-3 ring PAHs were degraded. In general, the smaller PAHs were degraded more rapidly than the larger PAHs. A distinct exception in the Boston Harbor sediment was naphthalene which was degraded very slowly at a rate comparable to the larger PAHs. In a similar in situ-like study of fuel-contaminated sediments from Liepaja Harbor, Latvia, there was no decline in PAH levels in samples that were sulfate-depleted. However, when the Latvia sediments were supplemented with sufficient sodium sulfate or gypsum to elevate pore water levels of sulfate to approximately 14-25 mM there was a 90% decline in the naphthalene and a 60% decline in the 2-methylnaphthalene pool within 90 days. These studies demonstrate for the first time that degradation by anaerobic microorganisms can significantly impact the in situ pools of PAHs in petroleum-contaminated, anoxic, sulfate-reducing harbor sediments and suggest that the self-purification capacity of contaminated harbor sediments is greater than previously considered.

Alternate JournalEnviron. Sci. Technol.
PubMed ID12487304