Analysis of biostimulated microbial communities from two field experiments reveals temporal and spatial differences in proteome profiles.

TitleAnalysis of biostimulated microbial communities from two field experiments reveals temporal and spatial differences in proteome profiles.
Publication TypeJournal Article
Year of Publication2010
AuthorsCallister SJ, Wilkins MJ, Nicora CD, Williams KH, Banfield JF, VerBerkmoes NC, Hettich RL, N'Guessan L, Mouser PJ, Elifantz H, Smith RD, Lovley DR, Lipton MS, Long PE
JournalEnviron Sci Technol
Volume44
Issue23
Pagination8897-903
Date Published2010 Dec 1
ISSN1520-5851
KeywordsBacteria, Biodiversity, Biomass, Fresh Water, Plankton, Proteome, Water Microbiology
Abstract

Stimulated by an acetate-amendment field experiment conducted in 2007, anaerobic microbial populations in the aquifer at the Rifle Integrated Field Research Challenge site in Colorado reduced mobile U(VI) to insoluble U(IV). During this experiment, planktonic biomass was sampled at various time points to quantitatively evaluate proteomes. In 2008, an acetate-amended field experiment was again conducted in a similar manner to the 2007 experiment. As there was no comprehensive metagenome sequence available for use in proteomics analysis, we systematically evaluated 12 different organism genome sequences to generate sets of aggregate genomes, or "pseudo-metagenomes", for supplying relative quantitative peptide and protein identifications. Proteomics results support previous observations of the dominance of Geobacteraceae during biostimulation using acetate as sole electron donor, and revealed a shift from an early stage of iron reduction to a late stage of iron reduction. Additionally, a shift from iron reduction to sulfate reduction was indicated by changes in the contribution of proteome information contributed by different organism genome sequences within the aggregate set. In addition, the comparison of proteome measurements made between the 2007 field experiment and 2008 field experiment revealed differences in proteome profiles. These differences may be the result of alterations in abundance and population structure within the planktonic biomass samples collected for analysis.

DOI10.1021/es101029f
Alternate JournalEnviron. Sci. Technol.
PubMed ID21058662