@article {3140, title = {Characterizing the interplay between multiple levels of organization within bacterial sigma factor regulatory networks.}, journal = {Nat Commun}, volume = {4}, year = {2013}, month = {2013}, pages = {1755}, abstract = {

Bacteria contain multiple sigma factors, each targeting diverse, but often overlapping sets of promoters, thereby forming a complex network. The layout and deployment of such a sigma factor network directly impacts global transcriptional regulation and ultimately dictates the phenotype. Here we integrate multi-omic data sets to determine the topology, the operational, and functional states of the sigma factor network in Geobacter sulfurreducens, revealing a unique network topology of interacting sigma factors. Analysis of the operational state of the sigma factor network shows a highly modular structure with σ(N) being the major regulator of energy metabolism. Surprisingly, the functional state of the network during the two most divergent growth conditions is nearly static, with sigma factor binding profiles almost invariant to environmental stimuli. This first comprehensive elucidation of the interplay between different levels of the sigma factor network organization is fundamental to characterize transcriptional regulatory mechanisms in bacteria.

}, keywords = {Energy Metabolism, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Gene Regulatory Networks, Genes, Bacterial, Geobacter, Models, Biological, Regulon, Sigma Factor}, issn = {2041-1723}, doi = {10.1038/ncomms2743}, author = {Qiu, Yu and Nagarajan, Harish and Embree, Mallory and Shieu, Wendy and Abate, Elisa and Ju{\'a}rez, Katy and Cho, Byung-Kwan and Elkins, James G and Nevin, Kelly P and Barrett, Christian L and Lovley, Derek R and Palsson, Bernhard O and Zengler, Karsten} } @article {409, title = {Phylogenetic classification of diverse LysR-type transcriptional regulators of a model prokaryote Geobacter sulfurreducens.}, journal = {J Mol Evol}, volume = {74}, year = {2012}, month = {2012 Apr}, pages = {187-205}, abstract = {The protein family of LysR-type transcriptional regulators (LTTRs) is highly abundant among prokaryotes. We analyzed 10,145 non-redundant microbial sequences with homology to eight LysR family regulators of a model prokaryote, Geobacter sulfurreducens, and employed phylogenetic tree inference for LTTR classification. We also analyzed the arrangement of genome clusters containing G. sulfurreducens LTTR genes and searched for LTTR regulatory motifs, suggesting likely regulatory targets of G. sulfurreducens LTTRs. This is the first study to date providing a detailed classification of LTTRs in the deltaproteobacterial family Geobacteraceae.}, issn = {1432-1432}, doi = {10.1007/s00239-012-9498-z}, author = {Krushkal, Julia and Qu, Yanhua and Lovley, Derek R and Adkins, Ronald M} } @article {427, title = {Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens.}, journal = {Biochim Biophys Acta}, volume = {1807}, year = {2011}, month = {2011 Apr}, pages = {404-12}, abstract = {Previous studies with Geobacter sulfurreducens have demonstrated that OmcS, an abundant c-type cytochrome that is only loosely bound to the outer surface, plays an important role in electron transfer to Fe(III) oxides as well as other extracellular electron acceptors. In order to further investigate the function of OmcS, it was purified from a strain that overproduces the protein. Purified OmcS had a molecular mass of 47015 Da, and six low-spin bis-histidinyl hexacoordinated heme groups. Its midpoint redox potential was -212 mV. A thermal stability analysis showed that the cooperative melting of purified OmcS occurs in the range of 65-82 {\textdegree}C. Far UV circular dichroism spectroscopy indicated that the secondary structure of purified OmcS consists of about 10\% α-helix and abundant disordered structures. Dithionite-reduced OmcS was able to transfer electrons to a variety of substrates of environmental importance including insoluble Fe(III) oxide, Mn(IV) oxide and humic substances. Stopped flow analysis revealed that the reaction rate of OmcS oxidation has a hyperbolic dependence on the concentration of the studied substrates. A ten-fold faster reaction rate with anthraquinone-2,6-disulfonate (AQDS) (25.2 s$^{-}${\textonesuperior}) was observed as compared to that with Fe(III) citrate (2.9 s$^{-}${\textonesuperior}). The results, coupled with previous localization and gene deletion studies, suggest that OmcS is well-suited to play an important role in extracellular electron transfer.}, keywords = {Circular Dichroism, Cytochrome c Group, Geobacter, Heme, Iron, Kinetics, Molecular Weight, Oxidation-Reduction, Solubility}, issn = {0006-3002}, doi = {10.1016/j.bbabio.2011.01.003}, author = {Qian, Xinlei and Mester, T{\"u}nde and Morgado, Leonor and Arakawa, Tsutomu and Sharma, Manju L and Inoue, Kengo and Joseph, Crisjoe and Salgueiro, Carlos A and Maroney, Michael J and Lovley, Derek R} } @article {441, title = {A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by adaptive evolution.}, journal = {Environ Microbiol}, volume = {13}, year = {2011}, month = {2011 Jan}, pages = {13-23}, abstract = {The stimulation of subsurface microbial metabolism often associated with engineered bioremediation of groundwater contaminants presents subsurface microorganisms, which are adapted for slow growth and metabolism in the subsurface, with new selective pressures. In order to better understand how Geobacter species might adapt to selective pressure for faster metal reduction in the subsurface, Geobacter sulfurreducens was put under selective pressure for rapid Fe(III) oxide reduction. The genomes of two resultant strains with rates of Fe(III) oxide reduction that were 10-fold higher than those of the parent strain were resequenced. Both strains contain either a single base-pair change or a 1 nucleotide insertion in a GEMM riboswitch upstream of GSU1761, a gene coding for the periplasmic c-type cytochrome designated PgcA. GSU1771, a gene coding for a SARP regulator, was also mutated in both strains. Introduction of either of the GEMM riboswitch mutations upstream of pgcA in the wild-type increased the abundance of pgcA transcripts, consistent with increased expression of pgcA in the adapted strains. One of the mutations doubled the rate of Fe(III) oxide reduction. Interruption of GSU1771 doubled the Fe(III) oxide reduction rate. This was associated with an increased in expression of pilA, the gene encoding the structural protein for the pili thought to function as microbial nanowires. The combination of the GSU1771 interruption with either of the pgcA mutations resulted in a strain that reduced Fe(III) as fast as the comparable adapted strain. These results suggest that the accumulation of a small number of beneficial mutations under selective pressure, similar to that potentially present during bioremediation, can greatly enhance the capacity for Fe(III) oxide reduction in G. sulfurreducens. Furthermore, the results emphasize the importance of the c-type cytochrome PgcA and pili in Fe(III) oxide reduction and demonstrate how adaptive evolution studies can aid in the elucidation of complex mechanisms, such as extracellular electron transfer.}, keywords = {Adaptation, Physiological, Biodegradation, Environmental, Cytochrome c Group, DNA, Bacterial, Electron Transport, Evolution, Molecular, Ferric Compounds, Gene Expression Profiling, Genes, Bacterial, Genome, Bacterial, Geobacter, Mutagenesis, Insertional, Mutation, Oligonucleotide Array Sequence Analysis, Oxidation-Reduction, Riboswitch, Sequence Analysis, DNA}, issn = {1462-2920}, doi = {10.1111/j.1462-2920.2010.02302.x}, author = {Tremblay, Pier-Luc and Summers, Zarath M and Glaven, Richard H and Nevin, Kelly P and Zengler, Karsten and Barrett, Christian L and Qiu, Yu and Palsson, Bernhard O and Lovley, Derek R} } @article {422, title = {Genome diversity of the TetR family of transcriptional regulators in a metal-reducing bacterial family Geobacteraceae and other microbial species.}, journal = {OMICS}, volume = {15}, year = {2011}, month = {2011 Jul-Aug}, pages = {495-506}, abstract = {Members of the TetR family of bacterial transcriptional regulators affect expression of genes whose products are involved in a variety of important functions, including osmotic stress, catabolic pathways, homeostasis, biosynthesis of antibiotics, expression of efflux pumps, multidrug resistance, and virulence of pathogenic bacteria. We used genome sequence information to carry out phylogenetic classification of 864 TetR family members with a special focus on TetR regulators in Geobacteraceae, an environmentally important family of delta-Proteobacteria. The genome of Geobacter sulfurreducens, a model representative of Geobacteraceae, contains nine genes from the tetR family. Several of these genes are located immediately upstream of operons encoding functionally important c-type cytochromes. Computational analyses identified the presence of conserved promoters and other regulatory binding sites upstream of several G. sulfurreducens tetR genes. This suggests the possibility of an intermediary role of TetR family proteins in Geobacteraceae in regulatory cascades involving a variety of sigma factors. In order to understand the role of the TetR regulatory family in Geobacteraceae, we have inferred phylogenetic relationships among the Geobacteraceae TetR proteins and their homologs in other microbial species.}, keywords = {Bacterial Proteins, Binding Sites, Gram-Negative Bacteria, Metals, Oxidation-Reduction, Phylogeny, Promoter Regions, Genetic, Sigma Factor}, issn = {1557-8100}, doi = {10.1089/omi.2010.0117}, author = {Krushkal, Julia and Sontineni, Sreedhar and Leang, Ching and Qu, Yanhua and Adkins, Ronald M and Lovley, Derek R} } @article {446, title = {Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens.}, journal = {Appl Environ Microbiol}, volume = {76}, year = {2010}, month = {2010 Jun}, pages = {4080-4}, abstract = {Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.}, keywords = {Cytochromes c, Ferric Compounds, Fimbriae, Bacterial, Geobacter, Immunohistochemistry, Microscopy, Immunoelectron}, issn = {1098-5336}, doi = {10.1128/AEM.00023-10}, author = {Leang, Ching and Qian, Xinlei and Mester, T{\"u}nde and Lovley, Derek R} } @article {443, title = {De Novo assembly of the complete genome of an enhanced electricity-producing variant of Geobacter sulfurreducens using only short reads.}, journal = {PLoS One}, volume = {5}, year = {2010}, month = {2010}, pages = {e10922}, abstract = {State-of-the-art DNA sequencing technologies are transforming the life sciences due to their ability to generate nucleotide sequence information with a speed and quantity that is unapproachable with traditional Sanger sequencing. Genome sequencing is a principal application of this technology, where the ultimate goal is the full and complete sequence of the organism of interest. Due to the nature of the raw data produced by these technologies, a full genomic sequence attained without the aid of Sanger sequencing has yet to be demonstrated.We have successfully developed a four-phase strategy for using only next-generation sequencing technologies (Illumina and 454) to assemble a complete microbial genome de novo. We applied this approach to completely assemble the 3.7 Mb genome of a rare Geobacter variant (KN400) that is capable of unprecedented current production at an electrode. Two key components of our strategy enabled us to achieve this result. First, we integrated the two data types early in the process to maximally leverage their complementary characteristics. And second, we used the output of different short read assembly programs in such a way so as to leverage the complementary nature of their different underlying algorithms or of their different implementations of the same underlying algorithm.The significance of our result is that it demonstrates a general approach for maximizing the efficiency and success of genome assembly projects as new sequencing technologies and new assembly algorithms are introduced. The general approach is a meta strategy, wherein sequencing data are integrated as early as possible and in particular ways and wherein multiple assembly algorithms are judiciously applied such that the deficiencies in one are complemented by another.}, keywords = {Algorithms, Electricity, Genome, Bacterial, Geobacter, Polymerase Chain Reaction}, issn = {1932-6203}, doi = {10.1371/journal.pone.0010922}, author = {Nagarajan, Harish and Butler, Jessica E and Klimes, Anna and Qiu, Yu and Zengler, Karsten and Ward, Joy and Young, Nelson D and Meth{\'e}, Barbara A and Palsson, Bernhard {\O} and Lovley, Derek R and Barrett, Christian L} } @article {436, title = {Genome-wide survey for PilR recognition sites of the metal-reducing prokaryote Geobacter sulfurreducens.}, journal = {Gene}, volume = {469}, year = {2010}, month = {2010 Dec 1}, pages = {31-44}, abstract = {Geobacter sulfurreducens is a species from the bacterial family Geobacteraceae, members of which participate in bioenergy production and in environmental bioremediation. G. sulfurreducens pili are electrically conductive and are required for Fe(III) oxide reduction and for optimal current production in microbial fuel cells. PilR is an enhancer binding protein, which is an activator acting together with the alternative sigma factor, RpoN, in transcriptional regulation. Both RpoN and PilR are involved in regulation of expression of the pilA gene, whose product is pilin, a structural component of a pilus. Using bioinformatic approaches, we predicted G. sulfurreducens sequence elements that are likely to be regulated by PilR. The functional importance of the genome region containing a PilR binding site predicted upstream of the pilA gene was experimentally validated. The predicted G. sulfurreducens PilR binding sites are similar to PilR binding sites of Pseudomonas and Moraxella. While the number of predicted PilR-regulated sites did not deviate from that expected by chance, multiple sites were predicted upstream of genes with roles in biosynthesis and function of pili and flagella, in secretory pathways, and in cell wall biogenesis, suggesting the possible involvement of G. sulfurreducens PilR in regulation of production and assembly of pili and flagella.}, keywords = {Bacterial Proteins, Base Sequence, Binding Sites, Conserved Sequence, Ferric Compounds, Fimbriae Proteins, Gene Expression Regulation, Bacterial, Genome, Bacterial, Geobacter, Molecular Sequence Data, Promoter Regions, Genetic, Transcription Factors, Transcription, Genetic}, issn = {1879-0038}, doi = {10.1016/j.gene.2010.08.005}, author = {Krushkal, Julia and Ju{\'a}rez, Katy and Barbe, Jose F and Qu, Yanhua and Andrade, Angel and Puljic, Marko and Adkins, Ronald M and Lovley, Derek R and Ueki, Toshiyuki} } @article {442, title = {Production of pilus-like filaments in Geobacter sulfurreducens in the absence of the type IV pilin protein PilA.}, journal = {FEMS Microbiol Lett}, volume = {310}, year = {2010}, month = {2010 Sep 1}, pages = {62-8}, abstract = {The pili of Geobacter sulfurreducens are of interest because of the apparent importance of the type IV pili in extracellular electron transfer. A strain of G. sulfurreducens, designated strain MA, produced many more pili than the previously studied DL-1 strain even though genome resequencing indicated that the MA and DL-1 genome sequences were identical. Filaments that looked similar to type IV pili in transmission electron micrographs were abundant even after the gene encoding PilA, the structural pilin protein, was deleted. The results of proteinase K treatment indicated that the filaments were proteinaceous. The simultaneous deletion of several genes encoding homologues of type II pseudopilins was required before the filaments were significantly depleted. The pilA-deficient MA strain attached to glass as well as the wild-type MA did, but strains in which three or four pseudopilin genes were deleted in addition to pilA had impaired attachment capabilities. These results demonstrate that there are several proteins that can yield pilin-like filaments in G. sulfurreducens and that some means other than microscopic observation is required before the composition of filaments can be unambiguously specified.}, keywords = {Bacterial Adhesion, Fimbriae Proteins, Fimbriae, Bacterial, Gene Deletion, Geobacter, Glass, Microscopy, Electron, Transmission}, issn = {1574-6968}, doi = {10.1111/j.1574-6968.2010.02046.x}, author = {Klimes, Anna and Franks, Ashley E and Glaven, Richard H and Tran, Hoa and Barrett, Christian L and Qiu, Yu and Zengler, Karsten and Lovley, Derek R} } @article {445, title = {Purification and characterization of OmcZ, an outer-surface, octaheme c-type cytochrome essential for optimal current production by Geobacter sulfurreducens.}, journal = {Appl Environ Microbiol}, volume = {76}, year = {2010}, month = {2010 Jun}, pages = {3999-4007}, abstract = {Previous studies have demonstrated that Geobacter sulfurreducens requires the c-type cytochrome OmcZ, which is present in large (OmcZ(L); 50-kDa) and small (OmcZ(S); 30-kDa) forms, for optimal current production in microbial fuel cells. This protein was further characterized to aid in understanding its role in current production. Subcellular-localization studies suggested that OmcZ(S) was the predominant extracellular form of OmcZ. N- and C-terminal amino acid sequence analysis of purified OmcZ(S) and molecular weight measurements indicated that OmcZ(S) is a cleaved product of OmcZ(L) retaining all 8 hemes, including 1 heme with the unusual c-type heme-binding motif CX(14)CH. The purified OmcZ(S) was remarkably thermally stable (thermal-denaturing temperature, 94.2 degrees C). Redox titration analysis revealed that the midpoint reduction potential of OmcZ(S) is approximately -220 mV (versus the standard hydrogen electrode [SHE]) with nonequivalent heme groups that cover a large reduction potential range (-420 to -60 mV). OmcZ(S) transferred electrons in vitro to a diversity of potential extracellular electron acceptors, such as Fe(III) citrate, U(VI), Cr(VI), Au(III), Mn(IV) oxide, and the humic substance analogue anthraquinone-2,6-disulfonate, but not Fe(III) oxide. The biochemical properties and extracellular localization of OmcZ suggest that it is well suited for promoting electron transfer in current-producing biofilms of G. sulfurreducens.}, keywords = {Binding Sites, Bioelectric Energy Sources, Cytochromes c, Electricity, Electron Transport, Geobacter, Heme, Hot Temperature, Molecular Sequence Data, Molecular Weight, Oxidation-Reduction, Protein Binding, Protein Stability, Sequence Alignment, Sequence Analysis, Protein}, issn = {1098-5336}, doi = {10.1128/AEM.00027-10}, author = {Inoue, Kengo and Qian, Xinlei and Morgado, Leonor and Kim, Byoung-Chan and Mester, T{\"u}nde and Izallalen, Mounir and Salgueiro, Carlos A and Lovley, Derek R} } @article {473, title = {Diversity of promoter elements in a Geobacter sulfurreducens mutant adapted to disruption in electron transfer.}, journal = {Funct Integr Genomics}, volume = {9}, year = {2009}, month = {2009 Feb}, pages = {15-25}, abstract = {The delta-proteobacterium, Geobacter sulfurreducens, can obtain energy by coupling the oxidation of organic matter to the reduction of insoluble Fe(III) or the anode of a microbial fuel cell. Because Fe(III) oxide or the anode surface, in contrast to oxygen, nitrate, or sulfate, is not soluble nor can it be reduced readily, Geobacter species have developed mechanisms which allow electrons to be delivered across outer membrane to the cell surface. OmcB is an outer-membrane c-type cytochrome important for G. sulfurreducens Fe(III) respiration. In the absence of OmcB, cells lost the ability to reduce soluble or insoluble Fe(III). However, the omcB deletion mutant can slowly adapt to growth on soluble Fe(III) over prolonged incubation in the medium with acetate as the electron donor. We discuss available information about predicted or experimentally validated promoters and transcription regulatory sites identified upstream of operons with transcriptional expression significantly changed in the adapted omcB mutant. DNA sequences of upstream regions of coregulated operons in the adapted mutant are divergent, suggesting the presence of recognition sites for different transcriptional regulators and indicating that adaptation of the omcB mutant to growth on soluble Fe(III) has shifted the relevant expression networks involved to a more diverse molecular basis.}, keywords = {Adaptation, Physiological, Electron Transport, Genetic Variation, Geobacter, Mutation, Promoter Regions, Genetic}, issn = {1438-7948}, doi = {10.1007/s10142-008-0094-7}, author = {Krushkal, Julia and Leang, Ching and Barbe, Jose F and Qu, Yanhua and Yan, Bin and Puljic, Marko and Adkins, Ronald M and Lovley, Derek R} } @article {766, title = {Examining landscape factors influencing relative distribution of mosquito genera and frequency of virus infection.}, journal = {Ecohealth}, volume = {6}, year = {2009}, month = {2009 Jun}, pages = {239-49}, abstract = {Mosquito-borne infections cause some of the most debilitating human diseases, including yellow fever and malaria, yet we lack an understanding of how disease risk scales with human-driven habitat changes. We present an approach to study variation in mosquito distribution and concomitant viral infections on the landscape level. In a pilot study we analyzed mosquito distribution along a 10-km transect of a West African rainforest area, which included primary forest, secondary forest, plantations, and human settlements. Variation was observed in the abundance of Anopheles, Aedes, Culex, and Uranotaenia mosquitoes between the different habitat types. Screening of trapped mosquitoes from the different habitats led to the isolation of five uncharacterized viruses of the families Bunyaviridae, Coronaviridae, Flaviviridae, and Rhabdoviridae, as well as an unclassified virus. Polymerase chain reaction screening for these five viruses in individual mosquitoes indicated a trend toward infection with specific viruses in specific mosquito genera that differed by habitat. Based on these initial analyses, we believe that further work is indicated to investigate the impact of anthropogenic landscape changes on mosquito distribution and accompanying arbovirus infection.}, keywords = {Africa, Western, Animals, Culicidae, Ecosystem, Humans, Insect Vectors, Polymerase Chain Reaction, Population Surveillance, RNA Viruses, Trees, Tropical Climate}, issn = {1612-9210}, doi = {10.1007/s10393-009-0260-y}, author = {Junglen, S and Kurth, A and Kuehl, H and Quan, P-L and Ellerbrok, H and Pauli, G and Nitsche, A and Nunn, C and Rich, S M and Lipkin, W I and Briese, T and Leendertz, F H} } @article {455, title = {GSEL version 2, an online genome-wide query system of operon organization and regulatory sequence elements of Geobacter sulfurreducens.}, journal = {OMICS}, volume = {13}, year = {2009}, month = {2009 Oct}, pages = {439-49}, abstract = {Geobacter sulfurreducens is a model organism within the delta-Proteobacterial family Geobacteraceae, members of which can participate in environmental bioremediation of metal and organic waste contaminants and in production of bioenergy. In this report, we describe a new, significantly expanded and updated, version 2 of the GSEL (Geobacter Sequence Elements) database ( http://geobacter.org/research/gsel2/ and http://geobacter.org/refs/gsel2/ ) and its accompanying online query system, which compiles information on operon organization and regulatory sequence elements in the genome of G. sulfurreducens. It incorporates a new online graphical browser, provides novel search capabilities, and includes updated operon predictions along with new information on predicted and experimentally validated genome regulatory sites. The GSEL database and online search system provides a unique and comprehensive tool cataloging information about gene regulation in G. sulfurreducens, aiding in investigation of mechanisms that regulate its ability to generate electric power, bioremediate environmental waste, and adapt to environmental changes.}, keywords = {Base Sequence, Databases, Genetic, Gene Expression Regulation, Bacterial, Genome, Bacterial, Geobacter, Humans, Internet, Online Systems, Operon, Regulatory Sequences, Nucleic Acid, Software, User-Computer Interface}, issn = {1557-8100}, doi = {10.1089/omi.2009.0081}, author = {Qu, Yanhua and Brown, Peter and Barbe, Jose F and Puljic, Marko and Merino, Enrique and Adkins, Ronald M and Lovley, Derek R and Krushkal, Julia} } @article {496, title = {Evidence that OmcB and OmpB of Geobacter sulfurreducens are outer membrane surface proteins.}, journal = {FEMS Microbiol Lett}, volume = {277}, year = {2007}, month = {2007 Dec}, pages = {21-7}, abstract = {The c-type cytochrome (OmcB) and the multicopper protein (OmpB) required for Fe(III) oxide reduction by Geobacter sulfurreducens were predicted previously to be outer membrane proteins, but it is not clear whether they are positioned in a manner that permits the interaction with Fe(III). Treatment of whole cells with proteinase K inhibited Fe(III) reduction, but had no impact on the inner membrane-associated fumarate reduction. OmcB was digested by protease, resulting in a smaller peptide. However, immunogold labeling coupled with transmission electron microscopy did not detect OmcB, suggesting that it is only partially exposed on the cell surface. In contrast, OmpB was completely digested with protease. OmpB was loosely associated with the cell surface as a substantial portion of it was recovered in the culture supernatant. Immunogold labeling demonstrated that OmpB associated with the cell was evenly distributed on the cell surface rather than localized to one side of the cell like the conductive pili. Although several proteins required for Fe(III) oxide reduction are shown to be exposed on the outer surface of G. sulfurreducens, the finding that OmcB is also surface exposed is the first report of a protein required for optimal Fe(III) citrate reduction at least partially accessible on the cell surface.}, keywords = {Bacterial Outer Membrane Proteins, Cell Membrane, Cytochromes c, Ferric Compounds, Geobacter, Microscopy, Electron, Transmission, Oxidation-Reduction, Peptide Hydrolases}, issn = {0378-1097}, doi = {10.1111/j.1574-6968.2007.00915.x}, author = {Qian, Xinlei and Reguera, Gemma and Mester, T{\"u}nde and Lovley, Derek R} } @article {521, title = {Two putative c-type multiheme cytochromes required for the expression of OmcB, an outer membrane protein essential for optimal Fe(III) reduction in Geobacter sulfurreducens.}, journal = {J Bacteriol}, volume = {188}, year = {2006}, month = {2006 Apr}, pages = {3138-42}, abstract = {Deletion of two homologous Geobacter sulfurreducens c-type cytochrome genes, omcG and omcH, decreased the rate of Fe(III) reduction and decreased the level of an outer membrane cytochrome critical for Fe(III) reduction, OmcB, without affecting its transcription. Expression of either gene restored Fe(III) reduction and OmcB expression, suggesting functional similarity.}, keywords = {Bacterial Outer Membrane Proteins, Bacterial Proteins, Blotting, Northern, Blotting, Western, Cytochromes c, Ferric Compounds, Gene Deletion, Gene Expression, Genes, Bacterial, Geobacter, Oxidation-Reduction, RNA, Bacterial, RNA, Messenger}, issn = {0021-9193}, doi = {10.1128/JB.188.8.3138-3142.2006}, author = {Kim, Byoung-Chan and Qian, Xinlei and Leang, Ching and Coppi, Maddalena V and Lovley, Derek R} } @article {869, title = {Extracellular degradation of medium chain length poly(beta-hydroxyalkanoates) by Comamonas sp.}, journal = {Int J Biol Macromol}, volume = {25}, year = {1999}, month = {1999 Jun-Jul}, pages = {135-43}, abstract = {The PHA-degrading isolate, strain P37C, was enriched from residential compost for its ability to hydrolyze the medium chain length PHA, poly(beta-hydroxyoctanoate) (PHO). It was subsequently found to grow on a wide range of PHAs, including both short chain length and medium chain length PHAs. The isolate was identified as belonging to the genus Comamonas. Strain P37C formed clear zones on poly(beta-hydroxybutyrate) (PHB), (PHO) and poly(beta-hydroxyphenylvalerate) (PHPV) overlay plates. PHA clear zone tubes were prepared using seven different kinds of PHAs, ranging from PHB with four-carbon repeating units, to poly(beta-hydroxyoctanoate-co-beta-hydroxyundecanoate) (PHOU) with 8- and 11-carbon repeating units. There was a direct correlation between PHA side chain length and rate of hydrolysis of the PHAs. A series of PHOUs containing varying percentages of unsaturated bonds were used to make a series of epoxidized PHOUs (PHOEs) with varying percentages of epoxy functions. Results of clear zone tube assays showed that these functionalized PHAs were all biodegradable by strain P37C, and there was no apparent correlation between rate of biodegradation and the proportion of functional groups in the PHAs. Biodegradability of these PHAs was verified using respirometry and enzyme assays. Cell-free supernatants containing activity toward PHAs were prepared, and strain P37C was shown to synthesize at least two distinct PHA depolymerases for the hydrolysis of SCL and MCL PHAs.}, keywords = {Carboxylic Ester Hydrolases, Gram-Negative Aerobic Rods and Cocci, Kinetics, Polyesters, Structure-Activity Relationship, Substrate Specificity}, issn = {0141-8130}, author = {Quinteros, R and Goodwin, S and Lenz, R W and Park, W H} }