@article {3067, title = { Capable of Direct Interspecies Electron Transfer.}, journal = {Environ Sci Technol}, volume = {54}, year = {2020}, month = {2020 Dec 01}, pages = {15347-15354}, abstract = {

Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments and anaerobic digestion. Previous studies have indicated that the potential for DIET is limited to methanogens in the , leading to the assumption that an abundance of other types of methanogens, such as species, indicates a lack of DIET. We report here on a strain of , designated strain YSL, that grows via DIET in defined cocultures with . The cocultures formed aggregates, in which cells of strain YSL and were uniformly dispersed throughout. This close association of the two species is the likely explanation for the ability of a strain of that could not express electrically conductive pili to grow in coculture with strain YSL. Granular activated carbon promoted the initial formation of the DIET-based cocultures. The discovery of DIET in , the genus of methanogens that has been the exemplar for interspecies electron transfer H, suggests that the capacity for DIET is much more broadly distributed among methanogens than previously considered. More innovative approaches to microbial isolation and characterization are needed in order to better understand how methanogenic communities function.

}, keywords = {Electron Transport, Electrons, Geobacter, Methane, Methanobacterium}, issn = {1520-5851}, doi = {10.1021/acs.est.0c05525}, author = {Zheng, Shiling and Liu, Fanghua and Wang, Bingchen and Zhang, Yuechao and Lovley, Derek R} } @article {3128, title = {Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange.}, journal = {Environ Microbiol}, volume = {17}, year = {2015}, month = {2015 Mar}, pages = {648-55}, abstract = {

Nanoscale magnetite can facilitate microbial extracellular electron transfer that plays an important role in biogeochemical cycles, bioremediation and several bioenergy strategies, but the mechanisms for the stimulation of extracellular electron transfer are poorly understood. Further investigation revealed that magnetite attached to the electrically conductive pili of Geobacter species in a manner reminiscent of the association of the multi-heme c-type cytochrome OmcS with the pili of Geobacter sulfurreducens. Magnetite conferred extracellular electron capabilities on an OmcS-deficient strain unable to participate in interspecies electron transfer or Fe(III) oxide reduction. In the presence of magnetite wild-type cells repressed expression of the OmcS gene, suggesting that cells might need to produce less OmcS when magnetite was available. The finding that magnetite can compensate for the lack of the electron transfer functions of a multi-heme c-type cytochrome has implications not only for the function of modern microbes, but also for the early evolution of microbial electron transport mechanisms.

}, keywords = {Cytochrome c Group, Electron Transport, Electrons, Ferrosoferric Oxide, Fimbriae Proteins, Fimbriae, Bacterial, Gene Expression Regulation, Bacterial, Geobacter, Heme, Oxides}, issn = {1462-2920}, doi = {10.1111/1462-2920.12485}, author = {Liu, Fanghua and Rotaru, Amelia-Elena and Shrestha, Pravin M and Malvankar, Nikhil S and Nevin, Kelly P and Lovley, Derek R} } @article {3117, title = {Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures.}, journal = {Bioresour Technol}, volume = {173}, year = {2014}, month = {2014 Dec}, pages = {82-86}, abstract = {

This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in co-cultures. Carbon cloth accelerated metabolism of DIET co-cultures (Geobacter metallireducens-Geobacter sulfurreducens and G.metallireducens-Methanosarcina barkeri) but did not promote metabolism of co-cultures performing interspecies H2 transfer (Desulfovibrio vulgaris-G.sulfurreducens). On the other hand, DIET co-cultures were not stimulated by poorly conductive cotton cloth. Mutant strains lacking electrically conductive pili, or pili-associated cytochromes participated in DIET only in the presence of carbon cloth. In co-cultures promoted by carbon cloth, cells were primarily associated with the cloth although the syntrophic partners were too far apart for cell-to-cell biological electrical connections to be feasible. Carbon cloth seemingly mediated interspecies electron transfer between the distant syntrophic partners. These results suggest that the ability of carbon cloth to accelerate DIET should be considered in anaerobic digester designs that incorporate carbon cloth.

}, keywords = {Carbon, Cell Communication, Coculture Techniques, Electric Conductivity, Electron Transport, Geobacter, Materials Testing, Membranes, Artificial, Microbial Consortia, Oxidation-Reduction, Symbiosis}, issn = {1873-2976}, doi = {10.1016/j.biortech.2014.09.009}, author = {Chen, Shanshan and Rotaru, Amelia-Elena and Liu, Fanghua and Philips, Jo and Woodard, Trevor L and Nevin, Kelly P and Lovley, Derek R} } @article {3113, title = {Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment.}, journal = {Bioresour Technol}, volume = {174}, year = {2014}, month = {2014 Dec}, pages = {306-10}, abstract = {

Prior investigation of an upflow anaerobic sludge blanket (UASB) reactor treating brewery wastes suggested that direct interspecies electron transfer (DIET) significantly contributed to interspecies electron transfer to methanogens. To investigate DIET in granules further, the electrical conductivity and bacterial community composition of granules in fourteen samples from four different UASB reactors treating brewery wastes were investigated. All of the UASB granules were electrically conductive whereas control granules from ANAMMOX (ANaerobic AMMonium OXidation) reactors and microbial granules from an aerobic bioreactor designed for phosphate removal were not. There was a moderate correlation (r=0.67) between the abundance of Geobacter species in the UASB granules and granule conductivity, suggesting that Geobacter contributed to granule conductivity. These results, coupled with previous studies, which have demonstrated that Geobacter species can donate electrons to methanogens that are typically predominant in anaerobic digesters, suggest that DIET may be a widespread phenomenon in UASB reactors treating brewery wastes.

}, keywords = {Alcoholic Beverages, Anaerobiosis, Bacteria, Bioreactors, Electric Conductivity, Ethanol, Sequence Analysis, DNA, Sewage, Waste Disposal, Fluid, Wastewater, Water Purification}, issn = {1873-2976}, doi = {10.1016/j.biortech.2014.10.004}, author = {Shrestha, Pravin Malla and Malvankar, Nikhil S and Werner, Jeffrey J and Franks, Ashley E and Elena-Rotaru, Amelia and Shrestha, Minita and Liu, Fanghua and Nevin, Kelly P and Angenent, Largus T and Lovley, Derek R} } @article {3125, title = {Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri.}, journal = {Appl Environ Microbiol}, volume = {80}, year = {2014}, month = {2014 Aug}, pages = {4599-605}, abstract = {

Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficient G. metallireducens strain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficient G. metallireducens isolates to share electrons with M. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. When M. barkeri was grown in coculture with the H2-producing Pelobacter carbinolicus, incapable of DIET, M. barkeri utilized H2 as an electron donor but metabolized little of the acetate that P.carbinolicus produced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism. P. carbinolicus-M. barkeri cocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable,making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells.

}, keywords = {Biological Transport, Electron Transport, Ethanol, Fimbriae Proteins, Fimbriae, Bacterial, Geobacter, Hydrogen, Methane, Methanosarcina barkeri}, issn = {1098-5336}, doi = {10.1128/AEM.00895-14}, author = {Rotaru, Amelia-Elena and Shrestha, Pravin Malla and Liu, Fanghua and Markovaite, Beatrice and Chen, Shanshan and Nevin, Kelly P and Lovley, Derek R} } @article {3124, title = {Promoting interspecies electron transfer with biochar.}, journal = {Sci Rep}, volume = {4}, year = {2014}, month = {2014 May 21}, pages = {5019}, abstract = {

Biochar, a charcoal-like product of the incomplete combustion of organic materials, is an increasingly popular soil amendment designed to improve soil fertility. We investigated the possibility that biochar could promote direct interspecies electron transfer (DIET) in a manner similar to that previously reported for granular activated carbon (GAC). Although the biochars investigated were 1000 times less conductive than GAC, they stimulated DIET in co-cultures of Geobacter metallireducens with Geobacter sulfurreducens or Methanosarcina barkeri in which ethanol was the electron donor. Cells were attached to the biochar, yet not in close contact, suggesting that electrons were likely conducted through the biochar, rather than biological electrical connections. The finding that biochar can stimulate DIET may be an important consideration when amending soils with biochar and can help explain why biochar may enhance methane production from organic wastes under anaerobic conditions.

}, keywords = {Charcoal, Coculture Techniques, Electron Transport, Electrons, Ethanol, Geobacter, Methanosarcina barkeri, Soil}, issn = {2045-2322}, doi = {10.1038/srep05019}, author = {Chen, Shanshan and Rotaru, Amelia-Elena and Shrestha, Pravin Malla and Malvankar, Nikhil S and Liu, Fanghua and Fan, Wei and Nevin, Kelly P and Lovley, Derek R} } @article {3134, title = {Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange.}, journal = {Environ Microbiol Rep}, volume = {5}, year = {2013}, month = {2013 Dec}, pages = {904-10}, abstract = {

Direct interspecies electron transfer (DIET) through biological electrical connections is an alternative to interspecies H2 transfer as a mechanism for electron exchange in syntrophic cultures. However, it has not previously been determined whether electrons received via DIET yield energy to support cell growth. In order to investigate this, co-cultures of Geobacter metallireducens, which can transfer electrons to wild-type G. sulfurreducens via DIET, were established with a citrate synthase-deficient G. sulfurreducens strain that can receive electrons for respiration through DIET only. In a medium with ethanol as the electron donor and fumarate as the electron acceptor, co-cultures with the citrate synthase-deficient G. sulfurreducens strain metabolized ethanol as fast as co-cultures with wild-type, but the acetate that G. metallireducens generated from ethanol oxidation accumulated. The lack of acetate metabolism resulted in less fumarate reduction and lower cell abundance of G. sulfurreducens. RNAseq analysis of transcript abundance was consistent with a lack of acetate metabolism in G. sulfurreducens and revealed gene expression levels for the uptake hydrogenase, formate dehydrogenase, the pilus-associated c-type cytochrome OmcS and pili consistent with electron transfer via DIET. These results suggest that electrons transferred via DIET can serve as the sole energy source to support anaerobic respiration.

}, keywords = {Acetates, Anaerobiosis, Citrate (si)-Synthase, Cytochrome c Group, Electron Transport, Electrons, Energy Metabolism, Ethanol, Fimbriae, Bacterial, Formate Dehydrogenases, Fumarates, Geobacter, Oxidation-Reduction}, issn = {1758-2229}, doi = {10.1111/1758-2229.12093}, author = {Shrestha, Pravin Malla and Rotaru, Amelia-Elena and Aklujkar, Muktak and Liu, Fanghua and Shrestha, Minita and Summers, Zarath M and Malvankar, Nikhil and Flores, Dan Carlo and Lovley, Derek R} } @article {3146, title = {Transcriptomic and genetic analysis of direct interspecies electron transfer.}, journal = {Appl Environ Microbiol}, volume = {79}, year = {2013}, month = {2013 Apr}, pages = {2397-404}, abstract = {

The possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2 interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in which Geobacter sulfurreducens was the electron-accepting partner for either Geobacter metallireducens, which performs DIET, or Pelobacter carbinolicus, which relies on HIT. Transcript abundance for G. sulfurreducens uptake hydrogenase genes was 7-fold lower in cocultures with G. metallireducens than in cocultures with P. carbinolicus, consistent with DIET and HIT, respectively, in the two cocultures. Transcript abundance for the pilus-associated cytochrome OmcS, which is essential for DIET but not for HIT, was 240-fold higher in the cocultures with G. metallireducens than in cocultures with P. carbinolicus. The pilin gene pilA was moderately expressed despite a mutation that might be expected to repress pilA expression. Lower transcript abundance for G. sulfurreducens genes associated with acetate metabolism in the cocultures with P. carbinolicus was consistent with the repression of these genes by H2 during HIT. Genes for the biogenesis of pili and flagella and several c-type cytochrome genes were among the most highly expressed in G. metallireducens. Mutant strains that lacked the ability to produce pili, flagella, or the outer surface c-type cytochrome encoded by Gmet_2896 were not able to form cocultures with G. sulfurreducens. These results demonstrate that there are unique gene expression patterns that distinguish DIET from HIT and suggest that metatranscriptomics may be a promising route to investigate interspecies electron transfer pathways in more-complex environments.

}, keywords = {Acetates, Deltaproteobacteria, Electron Transport, Hydrogen, Metabolic Networks and Pathways, Transcriptome}, issn = {1098-5336}, doi = {10.1128/AEM.03837-12}, author = {Shrestha, Pravin Malla and Rotaru, Amelia-Elena and Summers, Zarath M and Shrestha, Minita and Liu, Fanghua and Lovley, Derek R} } @article {404, title = {Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens.}, journal = {Appl Environ Microbiol}, volume = {78}, year = {2012}, month = {2012 Nov}, pages = {7645-51}, abstract = {

Direct interspecies electron transfer (DIET) is an alternative to interspecies H(2)/formate transfer as a mechanism for microbial species to cooperatively exchange electrons during syntrophic metabolism. To understand what specific properties contribute to DIET, studies were conducted with Pelobacter carbinolicus, a close relative of Geobacter metallireducens, which is capable of DIET. P. carbinolicus grew in coculture with Geobacter sulfurreducens with ethanol as the electron donor and fumarate as the electron acceptor, conditions under which G. sulfurreducens formed direct electrical connections with G. metallireducens. In contrast to the cell aggregation associated with DIET, P. carbinolicus and G. sulfurreducens did not aggregate. Attempts to initiate cocultures with a genetically modified strain of G. sulfurreducens incapable of both H(2) and formate utilization were unsuccessful, whereas cocultures readily grew with mutant strains capable of formate but not H(2) uptake or vice versa. The hydrogenase mutant of G. sulfurreducens compensated, in cocultures, with significantly increased formate dehydrogenase gene expression. In contrast, the transcript abundance of a hydrogenase gene was comparable in cocultures with that for the formate dehydrogenase mutant of G. sulfurreducens or the wild type, suggesting that H(2) was the primary electron carrier in the wild-type cocultures. Cocultures were also initiated with strains of G. sulfurreducens that could not produce pili or OmcS, two essential components for DIET. The finding that P. carbinolicus exchanged electrons with G. sulfurreducens via interspecies transfer of H(2)/formate rather than DIET demonstrates that not all microorganisms that can grow syntrophically are capable of DIET and that closely related microorganisms may use significantly different strategies for interspecies electron exchange.

}, keywords = {Coculture Techniques, Deltaproteobacteria, Electricity, Electron Transport, Electrons, Formates, Geobacter, Hydrogen, Microbial Interactions}, issn = {1098-5336}, doi = {10.1128/AEM.01946-12}, author = {Rotaru, Amelia-Elena and Shrestha, Pravin M and Liu, Fanghua and Ueki, Toshiyuki and Nevin, Kelly and Summers, Zarath M and Lovley, Derek R} }