@article {409, title = {Phylogenetic classification of diverse LysR-type transcriptional regulators of a model prokaryote Geobacter sulfurreducens.}, journal = {J Mol Evol}, volume = {74}, year = {2012}, month = {2012 Apr}, pages = {187-205}, abstract = {The protein family of LysR-type transcriptional regulators (LTTRs) is highly abundant among prokaryotes. We analyzed 10,145 non-redundant microbial sequences with homology to eight LysR family regulators of a model prokaryote, Geobacter sulfurreducens, and employed phylogenetic tree inference for LTTR classification. We also analyzed the arrangement of genome clusters containing G. sulfurreducens LTTR genes and searched for LTTR regulatory motifs, suggesting likely regulatory targets of G. sulfurreducens LTTRs. This is the first study to date providing a detailed classification of LTTRs in the deltaproteobacterial family Geobacteraceae.}, issn = {1432-1432}, doi = {10.1007/s00239-012-9498-z}, author = {Krushkal, Julia and Qu, Yanhua and Lovley, Derek R and Adkins, Ronald M} } @article {422, title = {Genome diversity of the TetR family of transcriptional regulators in a metal-reducing bacterial family Geobacteraceae and other microbial species.}, journal = {OMICS}, volume = {15}, year = {2011}, month = {2011 Jul-Aug}, pages = {495-506}, abstract = {Members of the TetR family of bacterial transcriptional regulators affect expression of genes whose products are involved in a variety of important functions, including osmotic stress, catabolic pathways, homeostasis, biosynthesis of antibiotics, expression of efflux pumps, multidrug resistance, and virulence of pathogenic bacteria. We used genome sequence information to carry out phylogenetic classification of 864 TetR family members with a special focus on TetR regulators in Geobacteraceae, an environmentally important family of delta-Proteobacteria. The genome of Geobacter sulfurreducens, a model representative of Geobacteraceae, contains nine genes from the tetR family. Several of these genes are located immediately upstream of operons encoding functionally important c-type cytochromes. Computational analyses identified the presence of conserved promoters and other regulatory binding sites upstream of several G. sulfurreducens tetR genes. This suggests the possibility of an intermediary role of TetR family proteins in Geobacteraceae in regulatory cascades involving a variety of sigma factors. In order to understand the role of the TetR regulatory family in Geobacteraceae, we have inferred phylogenetic relationships among the Geobacteraceae TetR proteins and their homologs in other microbial species.}, keywords = {Bacterial Proteins, Binding Sites, Gram-Negative Bacteria, Metals, Oxidation-Reduction, Phylogeny, Promoter Regions, Genetic, Sigma Factor}, issn = {1557-8100}, doi = {10.1089/omi.2010.0117}, author = {Krushkal, Julia and Sontineni, Sreedhar and Leang, Ching and Qu, Yanhua and Adkins, Ronald M and Lovley, Derek R} } @article {436, title = {Genome-wide survey for PilR recognition sites of the metal-reducing prokaryote Geobacter sulfurreducens.}, journal = {Gene}, volume = {469}, year = {2010}, month = {2010 Dec 1}, pages = {31-44}, abstract = {Geobacter sulfurreducens is a species from the bacterial family Geobacteraceae, members of which participate in bioenergy production and in environmental bioremediation. G. sulfurreducens pili are electrically conductive and are required for Fe(III) oxide reduction and for optimal current production in microbial fuel cells. PilR is an enhancer binding protein, which is an activator acting together with the alternative sigma factor, RpoN, in transcriptional regulation. Both RpoN and PilR are involved in regulation of expression of the pilA gene, whose product is pilin, a structural component of a pilus. Using bioinformatic approaches, we predicted G. sulfurreducens sequence elements that are likely to be regulated by PilR. The functional importance of the genome region containing a PilR binding site predicted upstream of the pilA gene was experimentally validated. The predicted G. sulfurreducens PilR binding sites are similar to PilR binding sites of Pseudomonas and Moraxella. While the number of predicted PilR-regulated sites did not deviate from that expected by chance, multiple sites were predicted upstream of genes with roles in biosynthesis and function of pili and flagella, in secretory pathways, and in cell wall biogenesis, suggesting the possible involvement of G. sulfurreducens PilR in regulation of production and assembly of pili and flagella.}, keywords = {Bacterial Proteins, Base Sequence, Binding Sites, Conserved Sequence, Ferric Compounds, Fimbriae Proteins, Gene Expression Regulation, Bacterial, Genome, Bacterial, Geobacter, Molecular Sequence Data, Promoter Regions, Genetic, Transcription Factors, Transcription, Genetic}, issn = {1879-0038}, doi = {10.1016/j.gene.2010.08.005}, author = {Krushkal, Julia and Ju{\'a}rez, Katy and Barbe, Jose F and Qu, Yanhua and Andrade, Angel and Puljic, Marko and Adkins, Ronald M and Lovley, Derek R and Ueki, Toshiyuki} } @article {473, title = {Diversity of promoter elements in a Geobacter sulfurreducens mutant adapted to disruption in electron transfer.}, journal = {Funct Integr Genomics}, volume = {9}, year = {2009}, month = {2009 Feb}, pages = {15-25}, abstract = {The delta-proteobacterium, Geobacter sulfurreducens, can obtain energy by coupling the oxidation of organic matter to the reduction of insoluble Fe(III) or the anode of a microbial fuel cell. Because Fe(III) oxide or the anode surface, in contrast to oxygen, nitrate, or sulfate, is not soluble nor can it be reduced readily, Geobacter species have developed mechanisms which allow electrons to be delivered across outer membrane to the cell surface. OmcB is an outer-membrane c-type cytochrome important for G. sulfurreducens Fe(III) respiration. In the absence of OmcB, cells lost the ability to reduce soluble or insoluble Fe(III). However, the omcB deletion mutant can slowly adapt to growth on soluble Fe(III) over prolonged incubation in the medium with acetate as the electron donor. We discuss available information about predicted or experimentally validated promoters and transcription regulatory sites identified upstream of operons with transcriptional expression significantly changed in the adapted omcB mutant. DNA sequences of upstream regions of coregulated operons in the adapted mutant are divergent, suggesting the presence of recognition sites for different transcriptional regulators and indicating that adaptation of the omcB mutant to growth on soluble Fe(III) has shifted the relevant expression networks involved to a more diverse molecular basis.}, keywords = {Adaptation, Physiological, Electron Transport, Genetic Variation, Geobacter, Mutation, Promoter Regions, Genetic}, issn = {1438-7948}, doi = {10.1007/s10142-008-0094-7}, author = {Krushkal, Julia and Leang, Ching and Barbe, Jose F and Qu, Yanhua and Yan, Bin and Puljic, Marko and Adkins, Ronald M and Lovley, Derek R} } @article {461, title = {The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens.}, journal = {BMC Microbiol}, volume = {9}, year = {2009}, month = {2009}, pages = {109}, abstract = {BACKGROUND: The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. RESULTS: The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second putative succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recently in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. CONCLUSION: The genomic evidence suggests that metabolism, physiology and regulation of gene expression in G. metallireducens may be dramatically different from other Geobacteraceae.}, keywords = {Bacterial Proteins, DNA, Bacterial, Gene Expression Regulation, Bacterial, Genome, Bacterial, Geobacter, Phylogeny, Sequence Analysis, DNA, Species Specificity, Transcription Factors}, issn = {1471-2180}, doi = {10.1186/1471-2180-9-109}, author = {Aklujkar, Muktak and Krushkal, Julia and DiBartolo, Genevieve and Lapidus, Alla and Land, Miriam L and Lovley, Derek R} } @article {458, title = {Genome-wide analysis of the RpoN regulon in Geobacter sulfurreducens.}, journal = {BMC Genomics}, volume = {10}, year = {2009}, month = {2009}, pages = {331}, abstract = {BACKGROUND: The role of the RNA polymerase sigma factor RpoN in regulation of gene expression in Geobacter sulfurreducens was investigated to better understand transcriptional regulatory networks as part of an effort to develop regulatory modules for genome-scale in silico models, which can predict the physiological responses of Geobacter species during groundwater bioremediation or electricity production. RESULTS: An rpoN deletion mutant could not be obtained under all conditions tested. In order to investigate the regulon of the G. sulfurreducens RpoN, an RpoN over-expression strain was made in which an extra copy of the rpoN gene was under the control of a taclac promoter. Combining both the microarray transcriptome analysis and the computational prediction revealed that the G. sulfurreducens RpoN controls genes involved in a wide range of cellular functions. Most importantly, RpoN controls the expression of the dcuB gene encoding the fumarate/succinate exchanger, which is essential for cell growth with fumarate as the terminal electron acceptor in G. sulfurreducens. RpoN also controls genes, which encode enzymes for both pathways of ammonia assimilation that is predicted to be essential under all growth conditions in G. sulfurreducens. Other genes that were identified as part of the RpoN regulon using either the computational prediction or the microarray transcriptome analysis included genes involved in flagella biosynthesis, pili biosynthesis and genes involved in central metabolism enzymes and cytochromes involved in extracellular electron transfer to Fe(III), which are known to be important for growth in subsurface environment or electricity production in microbial fuel cells. The consensus sequence for the predicted RpoN-regulated promoter elements is TTGGCACGGTTTTTGCT. CONCLUSION: The G. sulfurreducens RpoN is an essential sigma factor and a global regulator involved in a complex transcriptional network controlling a variety of cellular processes.}, keywords = {Bacterial Proteins, DNA, Bacterial, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Genome-Wide Association Study, Geobacter, Multigene Family, Oligonucleotide Array Sequence Analysis, Promoter Regions, Genetic, Regulon, RNA Polymerase Sigma 54}, issn = {1471-2164}, doi = {10.1186/1471-2164-10-331}, author = {Leang, Ching and Krushkal, Julia and Ueki, Toshiyuki and Puljic, Marko and Sun, Jun and Ju{\'a}rez, Katy and N{\'u}{\~n}ez, Cinthia and Reguera, Gemma and DiDonato, Raymond and Postier, Bradley and Adkins, Ronald M and Lovley, Derek R} } @article {455, title = {GSEL version 2, an online genome-wide query system of operon organization and regulatory sequence elements of Geobacter sulfurreducens.}, journal = {OMICS}, volume = {13}, year = {2009}, month = {2009 Oct}, pages = {439-49}, abstract = {Geobacter sulfurreducens is a model organism within the delta-Proteobacterial family Geobacteraceae, members of which can participate in environmental bioremediation of metal and organic waste contaminants and in production of bioenergy. In this report, we describe a new, significantly expanded and updated, version 2 of the GSEL (Geobacter Sequence Elements) database ( http://geobacter.org/research/gsel2/ and http://geobacter.org/refs/gsel2/ ) and its accompanying online query system, which compiles information on operon organization and regulatory sequence elements in the genome of G. sulfurreducens. It incorporates a new online graphical browser, provides novel search capabilities, and includes updated operon predictions along with new information on predicted and experimentally validated genome regulatory sites. The GSEL database and online search system provides a unique and comprehensive tool cataloging information about gene regulation in G. sulfurreducens, aiding in investigation of mechanisms that regulate its ability to generate electric power, bioremediate environmental waste, and adapt to environmental changes.}, keywords = {Base Sequence, Databases, Genetic, Gene Expression Regulation, Bacterial, Genome, Bacterial, Geobacter, Humans, Internet, Online Systems, Operon, Regulatory Sequences, Nucleic Acid, Software, User-Computer Interface}, issn = {1557-8100}, doi = {10.1089/omi.2009.0081}, author = {Qu, Yanhua and Brown, Peter and Barbe, Jose F and Puljic, Marko and Merino, Enrique and Adkins, Ronald M and Lovley, Derek R and Krushkal, Julia} } @article {700, title = {Characterizing regulation of metabolism in Geobacter sulfurreducens through genome-wide expression data and sequence analysis.}, journal = {OMICS}, volume = {12}, year = {2008}, month = {2008 Mar}, pages = {33-59}, abstract = {Geobacteraceae are a family of metal reducing bacteria with important applications in bioremediation and electricity generation. G. sulfurreducens is a representative of Geobacteraceae that has been extensively studied with the goal of extending the understanding of this family of organisms for optimizing their practical applications. Here, we have analyzed gene expression data from 10 experiments involving environmental and genetic perturbations and have identified putative transcription factor binding sites (TFBS) involved in regulating key aspects of metabolism. Specifically, we considered data from both a subset of 10 microarray experiments (7 of 10) and all 10 experiments. The expression data from these two sets were independently clustered, and the upstream regions of genes and operons from the clusters in both sets were used to identify TFBS using the AlignACE program. This analysis resulted in the identification of motifs upstream of several genes involved in central metabolism, sulfate assimilation, and energy metabolism, as well as genes potentially encoding acetate permease. Further, similar TFBS were identified from the analysis of both sets, suggesting that these TFBS are significant in the regulation of metabolism in G. sulfurreducens. In addition, we have utilized microarray data to derive condition specific constraints on the capacity of key enzymes in central metabolism. We have incorporated these constraints into the metabolic model of G. sulfurreducens and simulated Fe(II)-limited growth. The resulting prediction was consistent with data, suggesting that regulatory constraints are important for simulating growth phenotypes in nonoptimal environments.}, keywords = {Gene Expression Regulation, Bacterial, Genome, Bacterial, Geobacter, Models, Genetic, Oligonucleotide Array Sequence Analysis, Sequence Analysis, DNA, Transcription, Genetic}, issn = {1536-2310}, doi = {10.1089/omi.2007.0043}, author = {Mahadevan, Radhakrishnan and Yan, Bin and Postier, Brad and Nevin, Kelly P and Woodard, Trevor L and O{\textquoteright}Neil, Regina and Coppi, Maddalena V and Meth{\'e}, Barbara A and Krushkal, Julia} } @article {470, title = {Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function.}, journal = {BMC Genomics}, volume = {9}, year = {2008}, month = {2008}, pages = {471}, abstract = {BACKGROUND: Geobacter species are delta-Proteobacteria and are often the predominant species in a variety of sedimentary environments where Fe(III) reduction is important. Their ability to remediate contaminated environments and produce electricity makes them attractive for further study. Cell motility, biofilm formation, and type IV pili all appear important for the growth of Geobacter in changing environments and for electricity production. Recent studies in other bacteria have demonstrated that signaling pathways homologous to the paradigm established for Escherichia coli chemotaxis can regulate type IV pili-dependent motility, the synthesis of flagella and type IV pili, the production of extracellular matrix material, and biofilm formation. The classification of these pathways by comparative genomics improves the ability to understand how Geobacter thrives in natural environments and better their use in microbial fuel cells. RESULTS: The genomes of G. sulfurreducens, G. metallireducens, and G. uraniireducens contain multiple (approximately 70) homologs of chemotaxis genes arranged in several major clusters (six, seven, and seven, respectively). Unlike the single gene cluster of E. coli, the Geobacter clusters are not all located near the flagellar genes. The probable functions of some Geobacter clusters are assignable by homology to known pathways; others appear to be unique to the Geobacter sp. and contain genes of unknown function. We identified large numbers of methyl-accepting chemotaxis protein (MCP) homologs that have diverse sensing domain architectures and generate a potential for sensing a great variety of environmental signals. We discuss mechanisms for class-specific segregation of the MCPs in the cell membrane, which serve to maintain pathway specificity and diminish crosstalk. Finally, the regulation of gene expression in Geobacter differs from E. coli. The sequences of predicted promoter elements suggest that the alternative sigma factors sigma28 and sigma54 play a role in regulating the Geobacter chemotaxis gene expression. CONCLUSION: The numerous chemoreceptors and chemotaxis-like gene clusters of Geobacter appear to be responsible for a diverse set of signaling functions in addition to chemotaxis, including gene regulation and biofilm formation, through functionally and spatially distinct signaling pathways.}, keywords = {Amino Acid Sequence, Bacterial Proteins, Chemotaxis, Escherichia coli, Gene Expression Regulation, Bacterial, Genome, Bacterial, Genomics, Geobacter, Membrane Proteins, Molecular Sequence Data, Multigene Family, Promoter Regions, Genetic, Sequence Alignment, Sequence Homology, Amino Acid}, issn = {1471-2164}, doi = {10.1186/1471-2164-9-471}, author = {Tran, Hoa T and Krushkal, Julia and Antommattei, Frances M and Lovley, Derek R and Weis, Robert M} } @article {503, title = {Genome-wide expression profiling in Geobacter sulfurreducens: identification of Fur and RpoS transcription regulatory sites in a relGsu mutant.}, journal = {Funct Integr Genomics}, volume = {7}, year = {2007}, month = {2007 Jul}, pages = {229-55}, abstract = {Rel(Gsu) is the single Geobacter sulfurreducens homolog of RelA and SpoT proteins found in many organisms. These proteins are involved in the regulation of levels of guanosine 3{\textquoteright}, 5{\textquoteright} bispyrophosphate, ppGpp, a molecule that signals slow growth and stress response under nutrient limitation in bacteria. We used information obtained from genome-wide expression profiling of the rel(Gsu) deletion mutant to identify putative regulatory sites involved in transcription networks modulated by Rel(Gsu) or ppGpp. Differential gene expression in the rel(Gsu) deletion mutant, as compared to the wild type, was available from two growth conditions, steady state chemostat cultures and stationary phase batch cultures. Hierarchical clustering analysis of these two datasets identified several groups of operons that are likely co-regulated. Using a search for conserved motifs in the upstream regions of these co-regulated operons, we identified sequences similar to Fur- and RpoS-regulated sites. These findings suggest that Fur- and RpoS-dependent gene expression in G. sulfurreducens is affected by Rel(Gsu)-mediated signaling.}, keywords = {Bacterial Proteins, Base Sequence, Gene Deletion, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Genes, Bacterial, Genome, Bacterial, Geobacter, Ligases, Mutation, Operon, Promoter Regions, Genetic, Regulatory Sequences, Nucleic Acid, Repressor Proteins, Sigma Factor, Transcription, Genetic}, issn = {1438-793X}, doi = {10.1007/s10142-007-0048-5}, author = {Krushkal, Julia and Yan, Bin and DiDonato, Laurie N and Puljic, Marko and Nevin, Kelly P and Woodard, Trevor L and Adkins, Ronald M and Meth{\'e}, Barbara A and Lovley, Derek R} } @article {509, title = {Genome-wide similarity search for transcription factors and their binding sites in a metal-reducing prokaryote Geobacter sulfurreducens.}, journal = {Biosystems}, volume = {90}, year = {2007}, month = {2007 Sep-Oct}, pages = {421-41}, abstract = {The knowledge obtained from understanding individual elements involved in gene regulation is important for reconstructing gene regulatory networks, a key for understanding cellular behavior. To study gene regulatory interactions in a model microorganism, Geobacter sulfurreducens, which participates in metal reduction and energy harvesting, we investigated the presence of 59 known Escherichia coli transcription factors and predicted transcription regulatory sites in its genome. The supplementary material, available at http://www.geobacter.org/research/genomescan/, provides the results of similarity comparisons that identified regulatory proteins of G. sulfurreducens and the genome locations of the predicted regulatory sites, including the list of putative regulatory elements in the upstream regions of every predicted operon and singleton open reading frame. Regulatory sequence elements, predicted using genome similarity searches to matrices of established transcription regulatory elements from E. coli, provide an initial insight into regulation of genes and operons in G. sulfurreducens. The predicted regulatory elements were predominantly located in the upstream regions of operons and singleton open reading frames. The validity of the predictions was examined using a permutation approach. Sequence similarity searches indicate that E. coli transcription factors ArgR, CytR, DeoR, FlhCD (both FlhC and FlhD subunits), FruR, GalR, GlpR, H-NS, LacI, MetJ, PurR, TrpR, and Tus are likely missing from G. sulfurreducens. Phylogenetic analysis suggests that one HU subunit is present in G. sulfurreducens as compared to two subunits in E. coli, while each of the two E. coli IHF subunits, HimA and HimD, have two homologs in G. sulfurreducens. The closest homolog of E. coli RpoE in G. sulfurreducens may be more similar to FecI than to RpoE. These findings represent the first step in the understanding of the regulatory relationships in G. sulfurreducens on the genome scale.}, keywords = {Bacterial Proteins, Binding Sites, False Positive Reactions, Gene Expression Regulation, Bacterial, Genome, Bacterial, Geobacter, Metals, Models, Biological, Models, Genetic, Models, Statistical, Operon, Phylogeny, Sigma Factor, Systems Biology, Transcription Factors, Transcription, Genetic}, issn = {0303-2647}, doi = {10.1016/j.biosystems.2006.10.006}, author = {Yan, Bin and Lovley, Derek R and Krushkal, Julia} } @article {512, title = {Computational prediction of RpoS and RpoD regulatory sites in Geobacter sulfurreducens using sequence and gene expression information.}, journal = {Gene}, volume = {384}, year = {2006}, month = {2006 Dec 15}, pages = {73-95}, abstract = {RpoS, the sigma S subunit of RNA polymerase, is vital during the growth and survival of Geobacter sulfurreducens under conditions typically encountered in its native subsurface environments. We investigated the conservation of sites that may be important for RpoS function in G. sulfurreducens. We also employed sequence information and expression microarray data to predict G. sulfurreducens genome sites that may be related to RpoS regulation. Hierarchical clustering identified three clusters of significantly downregulated genes in the rpoS deletion mutant. The search for conserved overrepresented motifs in co-regulated operons identified likely -35 and -10 promoter elements upstream of a number of functionally important G. sulfurreducens operons that were downregulated in the rpoS deletion mutant. Putative -35/-10 promoter elements were also identified in the G. sulfurreducens genome using sequence similarity searches to matrices of -35/-10 promoter elements found in G. sulfurreducens and in Escherichia coli. Due to a sufficient degree of sequence similarity between -35/-10 promoter elements for RpoS, RpoD, and other sigma factors, both the sequence similarity searches and the search for conserved overrepresented motifs using microarray data may identify promoter elements for both RpoS and other sigma factors.}, keywords = {Amino Acid Sequence, Bacterial Proteins, Base Sequence, Citrates, Computational Biology, Conserved Sequence, DNA-Directed RNA Polymerases, Escherichia coli, Escherichia coli Proteins, Gene Deletion, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Genes, Bacterial, Genome, Bacterial, Geobacter, Molecular Sequence Data, Oligonucleotide Array Sequence Analysis, Operon, Promoter Regions, Genetic, Sigma Factor, Transcription, Genetic}, issn = {0378-1119}, doi = {10.1016/j.gene.2006.06.025}, author = {Yan, Bin and N{\'u}{\~n}ez, Cinthia and Ueki, Toshiyuki and Esteve-N{\'u}{\~n}ez, Abraham and Puljic, Marko and Adkins, Ronald M and Meth{\'e}, Barbara A and Lovley, Derek R and Krushkal, Julia} } @article {550, title = {Computational prediction of conserved operons and phylogenetic footprinting of transcription regulatory elements in the metal-reducing bacterial family Geobacteraceae.}, journal = {J Theor Biol}, volume = {230}, year = {2004}, month = {2004 Sep 7}, pages = {133-44}, abstract = {Members of the family Geobacteraceae are an important group of microorganisms from the delta subdivision of Proteobacteria that couple the oxidation of organic compounds to metal reduction. In order to uncover transcription regulatory interactions in these organisms, we used computational methods to identify conserved operons and putative cis-regulatory transcription elements. We identified 26 putative operons with gene order and function conserved among two species of Geobacteraceae, Geobacter sulfurreducens and Geobacter metallireducens. Most of these operons were also conserved in Desulfovibrio vulgaris, an additional metal reducing organism from family Desulfovibrionaceae of the delta subdivision of Proteobacteria. The predicted conserved operons were investigated for the presence of transcription factor binding sites by two different methods, (i) comparison of non-coding regions in conserved operons, and (ii) neural network promoter prediction. Predicted motifs were screened to identify most likely transcription factor binding sites and ribosome-binding sites. We provide information on motifs in Geobacteraceae similar to known transcription factor binding sites in Escherichia coli, conserved motifs in other bacterial species, putative palindromic sites, and predicted ribosome-binding sites. These predictions will aid in further elucidation of regulatory networks of gene interactions in Geobacteraceae.}, keywords = {Animals, Computational Biology, Conserved Sequence, DNA Footprinting, Genes, Regulator, Genome, Bacterial, Geobacter, Models, Genetic, Operon, Phylogeny}, issn = {0022-5193}, doi = {10.1016/j.jtbi.2004.04.022}, author = {Yan, Bin and Meth{\'e}, Barbara A and Lovley, Derek R and Krushkal, Julia} }