@article {3075, title = {Decorating the Outer Surface of Microbially Produced Protein Nanowires with Peptides.}, journal = {ACS Synth Biol}, volume = {8}, year = {2019}, month = {2019 Aug 16}, pages = {1809-1817}, abstract = {

The potential applications of electrically conductive protein nanowires (e-PNs) harvested from might be greatly expanded if the outer surface of the wires could be modified to confer novel sensing capabilities or to enhance binding to other materials. We developed a simple strategy for functionalizing e-PNs with surface-exposed peptides. The gene for the monomer that assembles into e-PNs was modified to add peptide tags at the carboxyl terminus of the monomer. Strains of were constructed that fabricated synthetic e-PNs with a six-histidine "His-tag" or both the His-tag and a nine-peptide "HA-tag" exposed on the outer surface. Addition of the peptide tags did not diminish e-PN conductivity. The abundance of HA-tag in e-PNs was controlled by placing expression of the gene for the synthetic monomer with the HA-tag under transcriptional regulation. These studies suggest broad possibilities for tailoring e-PN properties for diverse applications.

}, keywords = {Carboxy-Lyases, Ethylene Glycols, Molecular Structure, Nanowires, Oxygenases, Peptides, Phenylalanine Ammonia-Lyase, Plasmids, Proteins, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Styrenes}, issn = {2161-5063}, doi = {10.1021/acssynbio.9b00131}, author = {Ueki, Toshiyuki and Walker, David J F and Tremblay, Pier-Luc and Nevin, Kelly P and Ward, Joy E and Woodard, Trevor L and Nonnenmann, Stephen S and Lovley, Derek R} } @article {3111, title = {Structural basis for metallic-like conductivity in microbial nanowires.}, journal = {mBio}, volume = {6}, year = {2015}, month = {2015 Mar 03}, pages = {e00084}, abstract = {

UNLABELLED: Direct measurement of multiple physical properties of Geobacter sulfurreducens pili have demonstrated that they possess metallic-like conductivity, but several studies have suggested that metallic-like conductivity is unlikely based on the structures of the G.~sulfurreducens pilus predicted from homology models. In order to further evaluate this discrepancy, pili were examined with synchrotron X-ray microdiffraction and rocking-curve X-ray diffraction. Both techniques revealed a periodic 3.2-{\r A} spacing in conductive, wild-type G.~sulfurreducens pili that was missing in the nonconductive pili of strain Aro5, which lack key aromatic acids required for conductivity. The intensity of the 3.2-{\r A} peak increased 100-fold when the pH was shifted from 10.5 to 2, corresponding with a previously reported 100-fold increase in pilus conductivity with this pH change. These results suggest a clear structure-function correlation for metallic-like conductivity that can be attributed to overlapping π-orbitals of aromatic amino acids. A homology model of the G.~sulfurreducens pilus was constructed with a Pseudomonas aeruginosa pilus model as a template as an alternative to previous models, which were based on a Neisseria gonorrhoeae pilus structure. This alternative model predicted that aromatic amino acids in G.~sulfurreducens pili are packed within 3 to 4~{\r A}, consistent with the experimental results. Thus, the predictions of homology modeling are highly sensitive to assumptions inherent in the model construction. The experimental results reported here further support the concept that the pili of G.~sulfurreducens represent a novel class of electronically functional proteins in which aromatic amino acids promote long-distance electron transport.

IMPORTANCE: The mechanism for long-range electron transport along the conductive pili of Geobacter sulfurreducens is of interest because these "microbial nanowires" are important in biogeochemical cycling as well as applications in bioenergy and bioelectronics. Although proteins are typically insulators, G.~sulfurreducens pilus proteins possess metallic-like conductivity. The studies reported here provide important structural insights into the mechanism of the metallic-like conductivity of G.~sulfurreducens pili. This information is expected to be useful in the design of novel bioelectronic materials.

}, keywords = {Amino Acids, Aromatic, Chemical Phenomena, Electrophysiological Phenomena, Fimbriae, Bacterial, Geobacter, Hydrogen-Ion Concentration, Models, Molecular, Nanowires, X-Ray Diffraction}, issn = {2150-7511}, doi = {10.1128/mBio.00084-15}, author = {Malvankar, Nikhil S and Vargas, Madeline and Nevin, Kelly and Tremblay, Pier-Luc and Evans-Lutterodt, Kenneth and Nykypanchuk, Dmytro and Martz, Eric and Tuominen, Mark T and Lovley, Derek R} } @article {3127, title = {Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens.}, journal = {PLoS Comput Biol}, volume = {10}, year = {2014}, month = {2014 Apr}, pages = {e1003575}, abstract = {

Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species.

}, keywords = {Carbon, Electron Transport, Energy Metabolism, Genome, Bacterial, Geobacter, Models, Biological}, issn = {1553-7358}, doi = {10.1371/journal.pcbi.1003575}, author = {Feist, Adam M and Nagarajan, Harish and Rotaru, Amelia-Elena and Tremblay, Pier-Luc and Zhang, Tian and Nevin, Kelly P and Lovley, Derek R and Zengler, Karsten} } @article {3131, title = {A Geobacter sulfurreducens strain expressing pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe(III) oxide reduction and current production.}, journal = {Appl Environ Microbiol}, volume = {80}, year = {2014}, month = {2014 Feb}, pages = {1219-24}, abstract = {

The conductive pili of Geobacter species play an important role in electron transfer to Fe(III) oxides, in long-range electron transport through current-producing biofilms, and in direct interspecies electron transfer. Although multiple lines of evidence have indicated that the pili of Geobacter sulfurreducens have a metal-like conductivity, independent of the presence of c-type cytochromes, this claim is still controversial. In order to further investigate this phenomenon, a strain of G. sulfurreducens, designated strain PA, was constructed in which the gene for the native PilA, the structural pilin protein, was replaced with the PilA gene of Pseudomonas aeruginosa PAO1. Strain PA expressed and properly assembled P. aeruginosa PilA subunits into pili and exhibited a profile of outer surface c-type cytochromes similar to that of a control strain expressing the G. sulfurreducens PilA. Surprisingly, the strain PA pili were decorated with the c-type cytochrome OmcS in a manner similar to the control strain. However, the strain PA pili were 14-fold less conductive than the pili of the control strain, and strain PA was severely impaired in Fe(III) oxide reduction and current production. These results demonstrate that the presence of OmcS on pili is not sufficient to confer conductivity to pili and suggest that there are unique structural features of the G. sulfurreducens PilA that are necessary for conductivity.

}, keywords = {Amino Acid Sequence, Cytochromes c, Electricity, Ferric Compounds, Fimbriae Proteins, Fimbriae, Bacterial, Geobacter, Methanosarcinaceae, Molecular Sequence Data, Oxidation-Reduction, Pseudomonas aeruginosa, Sequence Alignment}, issn = {1098-5336}, doi = {10.1128/AEM.02938-13}, author = {Liu, Xing and Tremblay, Pier-Luc and Malvankar, Nikhil S and Nevin, Kelly P and Lovley, Derek R and Vargas, Madeline} } @article {3126, title = {Going wireless: Fe(III) oxide reduction without pili by Geobacter sulfurreducens strain JS-1.}, journal = {Appl Environ Microbiol}, volume = {80}, year = {2014}, month = {2014 Jul}, pages = {4331-40}, abstract = {

Previous studies have suggested that the conductive pili of Geobacter sulfurreducens are essential for extracellular electron transfer to Fe(III) oxides and for optimal long-range electron transport through current-producing biofilms. The KN400 strain of G. sulfurreducens reduces poorly crystalline Fe(III) oxide more rapidly than the more extensively studied DL-1 strain. Deletion of the gene encoding PilA, the structural pilin protein, in strain KN400 inhibited Fe(III) oxide reduction. However, low rates of Fe(III) reduction were detected after extended incubation (>30 days) in the presence of Fe(III) oxide. After seven consecutive transfers, the PilA-deficient strain adapted to reduce Fe(III) oxide as fast as the wild type. Microarray, whole-genome resequencing, proteomic, and gene deletion studies indicated that this adaptation was associated with the production of larger amounts of the c-type cytochrome PgcA, which was released into the culture medium. It is proposed that the extracellular cytochrome acts as an electron shuttle, promoting electron transfer from the outer cell surface to Fe(III) oxides. The adapted PilA-deficient strain competed well with the wild-type strain when both were grown together on Fe(III) oxide. However, when 50\% of the culture medium was replaced with fresh medium every 3 days, the wild-type strain outcompeted the adapted strain. A possible explanation for this is that the necessity to produce additional PgcA, to replace the PgcA being continually removed, put the adapted strain at a competitive disadvantage, similar to the apparent selection against electron shuttle-producing Fe(III) reducers in many anaerobic soils and sediments. Despite increased extracellular cytochrome production, the adapted PilA-deficient strain produced low levels of current, consistent with the concept that long-range electron transport through G. sulfurreducens biofilms is more effective via pili.

}, keywords = {Adaptation, Physiological, Biofilms, DNA, Bacterial, Electron Transport, Ferric Compounds, Fimbriae Proteins, Fimbriae, Bacterial, Gene Deletion, Geobacter, Oligonucleotide Array Sequence Analysis, Proteomics, Sequence Analysis, DNA}, issn = {1098-5336}, doi = {10.1128/AEM.01122-14}, author = {Smith, Jessica A and Tremblay, Pier-Luc and Shrestha, Pravin Malla and Snoeyenbos-West, Oona L and Franks, Ashley E and Nevin, Kelly P and Lovley, Derek R} } @article {3122, title = {Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens.}, journal = {Front Microbiol}, volume = {5}, year = {2014}, month = {2014}, pages = {245}, abstract = {

Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter metallireducens can anaerobically oxidize benzene to carbon dioxide with Fe(III) as the sole electron acceptor and that phenol is an intermediate in benzene oxidation. In an attempt to identify enzymes that might be involved in the conversion of benzene to phenol, whole-genome gene transcript abundance was compared in cells metabolizing benzene and cells metabolizing phenol. Eleven genes had significantly higher transcript abundance in benzene-metabolizing cells. Five of these genes had annotations suggesting that they did not encode proteins that could be involved in benzene metabolism and were not further studied. Strains were constructed in which one of the remaining six genes was deleted. The strain in which the monocistronic gene Gmet 0232 was deleted metabolized phenol, but not benzene. Transcript abundance of the adjacent monocistronic gene, Gmet 0231, predicted to encode a zinc-containing oxidoreductase, was elevated in cells metabolizing benzene, although not at a statistically significant level. However, deleting Gmet 0231 also yielded a strain that could metabolize phenol, but not benzene. Although homologs of Gmet 0231 and Gmet 0232 are found in microorganisms not known to anaerobically metabolize benzene, the adjacent localization of these genes is unique to G. metallireducens. The discovery of genes that are specifically required for the metabolism of benzene, but not phenol in G. metallireducens is an important step in potentially identifying the mechanisms for anaerobic benzene activation.

}, issn = {1664-302X}, doi = {10.3389/fmicb.2014.00245}, author = {Zhang, Tian and Tremblay, Pier-Luc and Chaurasia, Akhilesh K and Smith, Jessica A and Bain, Timothy S and Lovley, Derek R} } @article {3136, title = {Anaerobic benzene oxidation via phenol in Geobacter metallireducens.}, journal = {Appl Environ Microbiol}, volume = {79}, year = {2013}, month = {2013 Dec}, pages = {7800-6}, abstract = {

Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (<0.5 μM) of phenol accumulated in cultures of Geobacter metallireducens anaerobically oxidizing benzene to carbon dioxide with the reduction of Fe(III). Phenol was not detected in cell-free controls or in Fe(II)- and benzene-containing cultures of Geobacter sulfurreducens, a Geobacter species that cannot metabolize benzene. The phenol produced in G. metallireducens cultures was labeled with (18)O during growth in H2(18)O, as expected for anaerobic conversion of benzene to phenol. Analysis of whole-genome gene expression patterns indicated that genes for phenol metabolism were upregulated during growth on benzene but that genes for benzoate or toluene metabolism were not, further suggesting that phenol was an intermediate in benzene metabolism. Deletion of the genes for PpsA or PpcB, subunits of two enzymes specifically required for the metabolism of phenol, removed the capacity for benzene metabolism. These results demonstrate that benzene hydroxylation to phenol is an alternative to carboxylation for anaerobic benzene activation and suggest that this may be an important metabolic route for benzene removal in petroleum-contaminated groundwaters, in which Geobacter species are considered to play an important role in anaerobic benzene degradation.

}, keywords = {Anaerobiosis, Benzene, Carbon Dioxide, Gene Deletion, Gene Expression Profiling, Geobacter, Iron, Metabolic Networks and Pathways, Oxidation-Reduction, Phenol, Water}, issn = {1098-5336}, doi = {10.1128/AEM.03134-13}, author = {Zhang, Tian and Tremblay, Pier-Luc and Chaurasia, Akhilesh Kumar and Smith, Jessica A and Bain, Timothy S and Lovley, Derek R} } @article {3142, title = {Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens.}, journal = {mBio}, volume = {4}, year = {2013}, month = {2013 Mar 12}, pages = {e00105-13}, abstract = {

UNLABELLED: It has been proposed that Geobacter sulfurreducens requires conductive pili for long-range electron transport to Fe(III) oxides and for high-density current production in microbial fuel cells. In order to investigate this further, we constructed a strain of G. sulfurreducens, designated Aro-5, which produced pili with diminished conductivity. This was accomplished by modifying the amino acid sequence of PilA, the structural pilin protein. An alanine was substituted for each of the five aromatic amino acids in the carboxyl terminus of PilA, the region in which G. sulfurreducens PilA differs most significantly from the PilAs of microorganisms incapable of long-range extracellular electron transport. Strain Aro-5 produced pili that were properly decorated with the multiheme c-type cytochrome OmcS, which is essential for Fe(III) oxide reduction. However, pili preparations of the Aro-5 strain had greatly diminished conductivity and Aro-5 cultures were severely limited in their capacity to reduce Fe(III) compared to the control strain. Current production of the Aro-5 strain, with a graphite anode serving as the electron acceptor, was less than 10\% of that of the control strain. The conductivity of the Aro-5 biofilms was 10-fold lower than the control strain{\textquoteright}s. These results demonstrate that the pili of G. sulfurreducens must be conductive in order for the cells to be effective in extracellular long-range electron transport.

IMPORTANCE: Extracellular electron transfer by Geobacter species plays an important role in the biogeochemistry of soils and sediments and has a number of bioenergy applications. For example, microbial reduction of Fe(III) oxide is one of the most geochemically significant processes in anaerobic soils, aquatic sediments, and aquifers, and Geobacter organisms are often abundant in such environments. Geobacter sulfurreducens produces the highest current densities of any known pure culture, and close relatives are often the most abundant organisms colonizing anodes in microbial fuel cells that harvest electricity from wastewater or aquatic sediments. The finding that a strain of G. sulfurreducens that produces pili with low conductivity is limited in these extracellular electron transport functions provides further insight into these environmentally significant processes.

}, keywords = {Amino Acids, Aromatic, Bioelectric Energy Sources, Biofilms, Electricity, Electrodes, Electron Transport, Ferric Compounds, Fimbriae Proteins, Fimbriae, Bacterial, Geobacter, Graphite}, issn = {2150-7511}, doi = {10.1128/mBio.00105-13}, author = {Vargas, Madeline and Malvankar, Nikhil S and Tremblay, Pier-Luc and Leang, Ching and Smith, Jessica A and Patel, Pranav and Snoeyenbos-West, Oona and Nevin, Kelly P and Lovley, Derek R} } @article {3151, title = {Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens.}, journal = {Appl Environ Microbiol}, volume = {79}, year = {2013}, month = {2013 Feb}, pages = {901-7}, abstract = {

Geobacter species are important Fe(III) reducers in a diversity of soils and sediments. Mechanisms for Fe(III) oxide reduction have been studied in detail in Geobacter sulfurreducens, but a number of the most thoroughly studied outer surface components of G. sulfurreducens, particularly c-type cytochromes, are not well conserved among Geobacter species. In order to identify cellular components potentially important for Fe(III) oxide reduction in Geobacter metallireducens, gene transcript abundance was compared in cells grown on Fe(III) oxide or soluble Fe(III) citrate with whole-genome microarrays. Outer-surface cytochromes were also identified. Deletion of genes for c-type cytochromes that had higher transcript abundance during growth on Fe(III) oxides and/or were detected in the outer-surface protein fraction identified six c-type cytochrome genes, that when deleted removed the capacity for Fe(III) oxide reduction. Several of the c-type cytochromes which were essential for Fe(III) oxide reduction in G. metallireducens have homologs in G. sulfurreducens that are not important for Fe(III) oxide reduction. Other genes essential for Fe(III) oxide reduction included a gene predicted to encode an NHL (Ncl-1-HT2A-Lin-41) repeat-containing protein and a gene potentially involved in pili glycosylation. Genes associated with flagellum-based motility, chemotaxis, and pili had higher transcript abundance during growth on Fe(III) oxide, consistent with the previously proposed importance of these components in Fe(III) oxide reduction. These results demonstrate that there are similarities in extracellular electron transfer between G. metallireducens and G. sulfurreducens but the outer-surface c-type cytochromes involved in Fe(III) oxide reduction are different.

}, keywords = {Bacterial Proteins, Culture Media, Cytochromes c, Electron Transport, Ferric Compounds, Gene Deletion, Gene Expression Profiling, Geobacter, Microarray Analysis, Oxidation-Reduction}, issn = {1098-5336}, doi = {10.1128/AEM.02954-12}, author = {Smith, Jessica A and Lovley, Derek R and Tremblay, Pier-Luc} } @article {3148, title = {The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth.}, journal = {mBio}, volume = {4}, year = {2012}, month = {2012 Dec 26}, pages = {e00406-12}, abstract = {

UNLABELLED: It has been predicted that the Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD(+) oxidoreductase which contributes to ATP synthesis by an H(+)-translocating ATPase under both autotrophic and heterotrophic growth conditions. The recent development of methods for genetic manipulation of C. ljungdahlii made it possible to evaluate the possible role of the Rnf complex in energy conservation. Disruption of the C. ljungdahlii rnf operon inhibited autotrophic growth. ATP synthesis, proton gradient, membrane potential, and proton motive force collapsed in the Rnf-deficient mutant with H(2) as the electron source and CO(2) as the electron acceptor. Heterotrophic growth was hindered in the absence of a functional Rnf complex, as ATP synthesis, proton gradient, and proton motive force were significantly reduced with fructose as the electron donor. Growth of the Rnf-deficient mutant was also inhibited when no source of fixed nitrogen was provided. These results demonstrate that the Rnf complex of C. ljungdahlii is responsible for translocation of protons across the membrane to elicit energy conservation during acetogenesis and is a multifunctional device also implicated in nitrogen fixation.

IMPORTANCE: Mechanisms for energy conservation in the acetogen Clostridium ljungdahlii are of interest because of its potential value as a chassis for the production of biocommodities with novel electron donors such as carbon monoxide, syngas, and electrons derived from electrodes. Characterizing the components implicated in the chemiosmotic ATP synthesis during acetogenesis by C. ljungdahlii is a prerequisite for the development of highly productive strains. The Rnf complex has been considered the prime candidate to be the pump responsible for the formation of an ion gradient coupled with ATP synthesis in multiple acetogens. However, experimental evidence for a proton-pumping Rnf complex has been lacking. This study establishes the C. ljungdahlii Rnf complex as a proton-translocating ferredoxin:NAD(+) oxidoreductase and demonstrates that C. ljungdahlii has the potential of becoming a model organism to study proton translocation, electron transport, and other functions of the Rnf complex in energy conservation or other processes.

}, keywords = {Adenosine Triphosphate, Autotrophic Processes, Clostridium, Energy Metabolism, Fructose, Gene Knockout Techniques, Genes, Essential, Nitrogen, Operon, Oxidoreductases, Proton-Motive Force}, issn = {2150-7511}, doi = {10.1128/mBio.00406-12}, author = {Tremblay, Pier-Luc and Zhang, Tian and Dar, Shabir A and Leang, Ching and Lovley, Derek R} } @article {411, title = {Role of the NiFe hydrogenase Hya in oxidative stress defense in Geobacter sulfurreducens.}, journal = {J Bacteriol}, volume = {194}, year = {2012}, month = {2012 May}, pages = {2248-53}, abstract = {Geobacter sulfurreducens, an Fe(III)-reducing deltaproteobacterium found in anoxic subsurface environments, contains 4 NiFe hydrogenases. Hyb, a periplasmically oriented membrane-bound NiFe hydrogenase, is essential for hydrogen-dependent growth. The functions of the three other hydrogenases are unknown. We show here that the other periplasmically oriented membrane-bound NiFe hydrogenase, Hya, is necessary for growth after exposure to oxidative stress when hydrogen or a highly limiting concentration of acetate is the electron source. The beneficial impact of Hya on growth was dependent on the presence of H(2) in the atmosphere. Moreover, the Hya-deficient strain was more sensitive to the presence of superoxide or hydrogen peroxide. Hya was also required to safeguard Hyb hydrogen oxidation activity after exposure to O(2). Overexpression studies demonstrated that Hya was more resistant to oxidative stress than Hyb. Overexpression of Hya also resulted in the creation of a recombinant strain better fitted for exposure to oxidative stress than wild-type G. sulfurreducens. These results demonstrate that one of the physiological roles of the O(2)-resistant Hya is to participate in the oxidative stress defense of G. sulfurreducens.}, keywords = {Bacterial Proteins, Gene Expression Regulation, Bacterial, Geobacter, Hydrogen Peroxide, Hydrogenase, Mutation, Oxidative Stress, Oxygen, Reactive Oxygen Species, Reverse Transcriptase Polymerase Chain Reaction, Xanthine Oxidase}, issn = {1098-5530}, doi = {10.1128/JB.00044-12}, author = {Tremblay, Pier-Luc and Lovley, Derek R} } @article {441, title = {A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by adaptive evolution.}, journal = {Environ Microbiol}, volume = {13}, year = {2011}, month = {2011 Jan}, pages = {13-23}, abstract = {The stimulation of subsurface microbial metabolism often associated with engineered bioremediation of groundwater contaminants presents subsurface microorganisms, which are adapted for slow growth and metabolism in the subsurface, with new selective pressures. In order to better understand how Geobacter species might adapt to selective pressure for faster metal reduction in the subsurface, Geobacter sulfurreducens was put under selective pressure for rapid Fe(III) oxide reduction. The genomes of two resultant strains with rates of Fe(III) oxide reduction that were 10-fold higher than those of the parent strain were resequenced. Both strains contain either a single base-pair change or a 1 nucleotide insertion in a GEMM riboswitch upstream of GSU1761, a gene coding for the periplasmic c-type cytochrome designated PgcA. GSU1771, a gene coding for a SARP regulator, was also mutated in both strains. Introduction of either of the GEMM riboswitch mutations upstream of pgcA in the wild-type increased the abundance of pgcA transcripts, consistent with increased expression of pgcA in the adapted strains. One of the mutations doubled the rate of Fe(III) oxide reduction. Interruption of GSU1771 doubled the Fe(III) oxide reduction rate. This was associated with an increased in expression of pilA, the gene encoding the structural protein for the pili thought to function as microbial nanowires. The combination of the GSU1771 interruption with either of the pgcA mutations resulted in a strain that reduced Fe(III) as fast as the comparable adapted strain. These results suggest that the accumulation of a small number of beneficial mutations under selective pressure, similar to that potentially present during bioremediation, can greatly enhance the capacity for Fe(III) oxide reduction in G. sulfurreducens. Furthermore, the results emphasize the importance of the c-type cytochrome PgcA and pili in Fe(III) oxide reduction and demonstrate how adaptive evolution studies can aid in the elucidation of complex mechanisms, such as extracellular electron transfer.}, keywords = {Adaptation, Physiological, Biodegradation, Environmental, Cytochrome c Group, DNA, Bacterial, Electron Transport, Evolution, Molecular, Ferric Compounds, Gene Expression Profiling, Genes, Bacterial, Genome, Bacterial, Geobacter, Mutagenesis, Insertional, Mutation, Oligonucleotide Array Sequence Analysis, Oxidation-Reduction, Riboswitch, Sequence Analysis, DNA}, issn = {1462-2920}, doi = {10.1111/j.1462-2920.2010.02302.x}, author = {Tremblay, Pier-Luc and Summers, Zarath M and Glaven, Richard H and Nevin, Kelly P and Zengler, Karsten and Barrett, Christian L and Qiu, Yu and Palsson, Bernhard O and Lovley, Derek R} }