@article {3086, title = {Transcriptomic profiles of Clostridium ljungdahlii during lithotrophic growth with syngas or H and CO compared to organotrophic growth with fructose.}, journal = {Sci Rep}, volume = {7}, year = {2017}, month = {2017 Oct 13}, pages = {13135}, abstract = {

Clostridium ljungdahlii derives energy by lithotrophic and organotrophic acetogenesis. C. ljungdahlii was grown organotrophically with fructose and also lithotrophically, either with syngas - a gas mixture containing hydrogen (H), carbon dioxide (CO), and carbon monoxide (CO), or with H and CO. Gene expression was compared quantitatively by microarrays using RNA extracted from all three conditions. Gene expression with fructose and with H/CO was compared by RNA-Seq. Upregulated genes with both syngas and H/CO (compared to fructose) point to the urea cycle, uptake and degradation of peptides and amino acids, response to sulfur starvation, potentially NADPH-producing pathways involving (S)-malate and ornithine, quorum sensing, sporulation, and cell wall remodeling, suggesting a global and multicellular response to lithotrophic conditions. With syngas, the upregulated (R)-lactate dehydrogenase gene represents a route of electron transfer from ferredoxin to NAD. With H/CO, flavodoxin and histidine biosynthesis genes were upregulated. Downregulated genes corresponded to an intracytoplasmic microcompartment for disposal of methylglyoxal, a toxic byproduct of glycolysis, as 1-propanol. Several cytoplasmic and membrane-associated redox-active protein genes were differentially regulated. The transcriptomic profiles of C. ljungdahlii in lithotrophic and organotrophic growth modes indicate large-scale physiological and metabolic differences, observations that may guide biofuel and commodity chemical production with this species.

}, keywords = {Carbon Dioxide, Carbon Monoxide, Clostridium, Fructose, Hydrogen, NADP, Transcriptome}, issn = {2045-2322}, doi = {10.1038/s41598-017-12712-w}, author = {Aklujkar, Muktak and Leang, Ching and Shrestha, Pravin M and Shrestha, Minita and Lovley, Derek R} } @article {3130, title = {Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii.}, journal = {Appl Environ Microbiol}, volume = {80}, year = {2014}, month = {2014 Apr}, pages = {2410-6}, abstract = {

The development of tools for genetic manipulation of Clostridium ljungdahlii has increased its attractiveness as a chassis for autotrophic production of organic commodities and biofuels from syngas and microbial electrosynthesis and established it as a model organism for the study of the basic physiology of acetogenesis. In an attempt to expand the genetic toolbox for C. ljungdahlii, the possibility of adapting a lactose-inducible system for gene expression, previously reported for Clostridium perfringens, was investigated. The plasmid pAH2, originally developed for C. perfringens with a gusA reporter gene, functioned as an effective lactose-inducible system in C. ljungdahlii. Lactose induction of C. ljungdahlii containing pB1, in which the gene for the aldehyde/alcohol dehydrogenase AdhE1 was downstream of the lactose-inducible promoter, increased expression of adhE1 30-fold over the wild-type level, increasing ethanol production 1.5-fold, with a corresponding decrease in acetate production. Lactose-inducible expression of adhE1 in a strain in which adhE1 and the adhE1 homolog adhE2 had been deleted from the chromosome restored ethanol production to levels comparable to those in the wild-type strain. Inducing expression of adhE2 similarly failed to restore ethanol production, suggesting that adhE1 is the homolog responsible for ethanol production. Lactose-inducible expression of the four heterologous genes necessary to convert acetyl coenzyme A (acetyl-CoA) to acetone diverted ca. 60\% of carbon flow to acetone production during growth on fructose, and 25\% of carbon flow went to acetone when carbon monoxide was the electron donor. These studies demonstrate that the lactose-inducible system described here will be useful for redirecting carbon and electron flow for the biosynthesis of products more valuable than acetate. Furthermore, this tool should aid in optimizing microbial electrosynthesis and for basic studies on the physiology of acetogenesis.

}, keywords = {Acetic Acid, Acetone, Acetyl Coenzyme A, Alcohol Dehydrogenase, Carbon, Clostridium, Ethanol, Fructose, Gene Expression, Gene Expression Regulation, Bacterial, Lactose, Metabolic Engineering, Metabolic Flux Analysis, Transcriptional Activation}, issn = {1098-5336}, doi = {10.1128/AEM.03666-13}, author = {Banerjee, Areen and Leang, Ching and Ueki, Toshiyuki and Nevin, Kelly P and Lovley, Derek R} } @article {3142, title = {Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens.}, journal = {mBio}, volume = {4}, year = {2013}, month = {2013 Mar 12}, pages = {e00105-13}, abstract = {

UNLABELLED: It has been proposed that Geobacter sulfurreducens requires conductive pili for long-range electron transport to Fe(III) oxides and for high-density current production in microbial fuel cells. In order to investigate this further, we constructed a strain of G. sulfurreducens, designated Aro-5, which produced pili with diminished conductivity. This was accomplished by modifying the amino acid sequence of PilA, the structural pilin protein. An alanine was substituted for each of the five aromatic amino acids in the carboxyl terminus of PilA, the region in which G. sulfurreducens PilA differs most significantly from the PilAs of microorganisms incapable of long-range extracellular electron transport. Strain Aro-5 produced pili that were properly decorated with the multiheme c-type cytochrome OmcS, which is essential for Fe(III) oxide reduction. However, pili preparations of the Aro-5 strain had greatly diminished conductivity and Aro-5 cultures were severely limited in their capacity to reduce Fe(III) compared to the control strain. Current production of the Aro-5 strain, with a graphite anode serving as the electron acceptor, was less than 10\% of that of the control strain. The conductivity of the Aro-5 biofilms was 10-fold lower than the control strain{\textquoteright}s. These results demonstrate that the pili of G. sulfurreducens must be conductive in order for the cells to be effective in extracellular long-range electron transport.

IMPORTANCE: Extracellular electron transfer by Geobacter species plays an important role in the biogeochemistry of soils and sediments and has a number of bioenergy applications. For example, microbial reduction of Fe(III) oxide is one of the most geochemically significant processes in anaerobic soils, aquatic sediments, and aquifers, and Geobacter organisms are often abundant in such environments. Geobacter sulfurreducens produces the highest current densities of any known pure culture, and close relatives are often the most abundant organisms colonizing anodes in microbial fuel cells that harvest electricity from wastewater or aquatic sediments. The finding that a strain of G. sulfurreducens that produces pili with low conductivity is limited in these extracellular electron transport functions provides further insight into these environmentally significant processes.

}, keywords = {Amino Acids, Aromatic, Bioelectric Energy Sources, Biofilms, Electricity, Electrodes, Electron Transport, Ferric Compounds, Fimbriae Proteins, Fimbriae, Bacterial, Geobacter, Graphite}, issn = {2150-7511}, doi = {10.1128/mBio.00105-13}, author = {Vargas, Madeline and Malvankar, Nikhil S and Tremblay, Pier-Luc and Leang, Ching and Smith, Jessica A and Patel, Pranav and Snoeyenbos-West, Oona and Nevin, Kelly P and Lovley, Derek R} } @article {3150, title = {A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen.}, journal = {Appl Environ Microbiol}, volume = {79}, year = {2013}, month = {2013 Feb}, pages = {1102-9}, abstract = {

Methods for genetic manipulation of Clostridium ljungdahlii are of interest because of the potential for production of fuels and other biocommodities from carbon dioxide via microbial electrosynthesis or more traditional modes of autotrophy with hydrogen or carbon monoxide as the electron donor. Furthermore, acetogenesis plays an important role in the global carbon cycle. Gene deletion strategies required for physiological studies of C. ljungdahlii have not previously been demonstrated. An electroporation procedure for introducing plasmids was optimized, and four different replicative origins for plasmid propagation in C. ljungdahlii were identified. Chromosomal gene deletion via double-crossover homologous recombination with a suicide vector was demonstrated initially with deletion of the gene for FliA, a putative sigma factor involved in flagellar biogenesis and motility in C. ljungdahlii. Deletion of fliA yielded a strain that lacked flagella and was not motile. To evaluate the potential utility of gene deletions for functional genomic studies and to redirect carbon and electron flow, the genes for the putative bifunctional aldehyde/alcohol dehydrogenases, adhE1 and adhE2, were deleted individually or together. Deletion of adhE1, but not adhE2, diminished ethanol production with a corresponding carbon recovery in acetate. The double deletion mutant had a phenotype similar to that of the adhE1-deficient strain. Expression of adhE1 in trans partially restored the capacity for ethanol production. These results demonstrate the feasibility of genetic investigations of acetogen physiology and the potential for genetic manipulation of C. ljungdahlii to optimize autotrophic biocommodity production.

}, keywords = {Clostridium, Electroporation, Gene Deletion, Genetic Complementation Test, Genetic Vectors, Genetics, Microbial, Metabolic Engineering, Molecular Biology, Plasmids, Transformation, Bacterial}, issn = {1098-5336}, doi = {10.1128/AEM.02891-12}, author = {Leang, Ching and Ueki, Toshiyuki and Nevin, Kelly P and Lovley, Derek R} } @article {3137, title = {U(VI) reduction by diverse outer surface c-type cytochromes of Geobacter sulfurreducens.}, journal = {Appl Environ Microbiol}, volume = {79}, year = {2013}, month = {2013 Oct}, pages = {6369-74}, abstract = {

Early studies with Geobacter sulfurreducens suggested that outer-surface c-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain of G. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20\% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surface c-type cytochromes of G. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83\% {\textpm} 10\% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89\% {\textpm} 10\% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested that G. sulfurreducens requires outer-surface c-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors.

}, keywords = {Cytochromes, Fimbriae, Bacterial, Gene Deletion, Geobacter, Microscopy, Electron, Transmission, Oxidation-Reduction, Uranium, X-Ray Absorption Spectroscopy}, issn = {1098-5336}, doi = {10.1128/AEM.02551-13}, author = {Orellana, Roberto and Leavitt, Janet J and Comolli, Luis R and Csencsits, Roseann and Janot, Noemie and Flanagan, Kelly A and Gray, Arianna S and Leang, Ching and Izallalen, Mounir and Mester, T{\"u}nde and Lovley, Derek R} } @article {412, title = {Identification of multicomponent histidine-aspartate phosphorelay system controlling flagellar and motility gene expression in Geobacter species.}, journal = {J Biol Chem}, volume = {287}, year = {2012}, month = {2012 Mar 30}, pages = {10958-66}, abstract = {Geobacter species play an important role in the natural biogeochemical cycles of aquatic sediments and subsurface environments as well as in subsurface bioremediation by oxidizing organic compounds with the reduction of insoluble Fe(III) oxides. Flagellum-based motility is considered to be critical for Geobacter species to locate fresh sources of Fe(III) oxides. Functional and comparative genomic approaches, coupled with genetic and biochemical methods, identified key regulators for flagellar gene expression in Geobacter species. A master transcriptional regulator, designated FgrM, is a member of the enhancer-binding protein family. The fgrM gene in the most studied strain of Geobacter species, Geobacter sulfurreducens strain DL-1, is truncated by a transposase gene, preventing flagellar biosynthesis. Integrating a functional FgrM homolog restored flagellar biosynthesis and motility in G. sulfurreducens DL-1 and enhanced the ability to reduce insoluble Fe(III) oxide. Interrupting the fgrM gene in G. sulfurreducens strain KN400, which is motile, removed the capacity for flagellar production and inhibited Fe(III) oxide reduction. FgrM, which is also a response regulator of the two-component His-Asp phosphorelay system, was phosphorylated by histidine kinase GHK4, which was essential for flagellar production and motility. GHK4, which is a hybrid kinase with a receiver domain at the N terminus, was phosphorylated by another histidine kinase, GHK3. Therefore, the multicomponent His-Asp phosphorelay system appears to control flagellar gene expression in Geobacter species.}, issn = {1083-351X}, doi = {10.1074/jbc.M112.345041}, author = {Ueki, Toshiyuki and Leang, Ching and Inoue, Kengo and Lovley, Derek R} } @article {3148, title = {The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth.}, journal = {mBio}, volume = {4}, year = {2012}, month = {2012 Dec 26}, pages = {e00406-12}, abstract = {

UNLABELLED: It has been predicted that the Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD(+) oxidoreductase which contributes to ATP synthesis by an H(+)-translocating ATPase under both autotrophic and heterotrophic growth conditions. The recent development of methods for genetic manipulation of C. ljungdahlii made it possible to evaluate the possible role of the Rnf complex in energy conservation. Disruption of the C. ljungdahlii rnf operon inhibited autotrophic growth. ATP synthesis, proton gradient, membrane potential, and proton motive force collapsed in the Rnf-deficient mutant with H(2) as the electron source and CO(2) as the electron acceptor. Heterotrophic growth was hindered in the absence of a functional Rnf complex, as ATP synthesis, proton gradient, and proton motive force were significantly reduced with fructose as the electron donor. Growth of the Rnf-deficient mutant was also inhibited when no source of fixed nitrogen was provided. These results demonstrate that the Rnf complex of C. ljungdahlii is responsible for translocation of protons across the membrane to elicit energy conservation during acetogenesis and is a multifunctional device also implicated in nitrogen fixation.

IMPORTANCE: Mechanisms for energy conservation in the acetogen Clostridium ljungdahlii are of interest because of its potential value as a chassis for the production of biocommodities with novel electron donors such as carbon monoxide, syngas, and electrons derived from electrodes. Characterizing the components implicated in the chemiosmotic ATP synthesis during acetogenesis by C. ljungdahlii is a prerequisite for the development of highly productive strains. The Rnf complex has been considered the prime candidate to be the pump responsible for the formation of an ion gradient coupled with ATP synthesis in multiple acetogens. However, experimental evidence for a proton-pumping Rnf complex has been lacking. This study establishes the C. ljungdahlii Rnf complex as a proton-translocating ferredoxin:NAD(+) oxidoreductase and demonstrates that C. ljungdahlii has the potential of becoming a model organism to study proton translocation, electron transport, and other functions of the Rnf complex in energy conservation or other processes.

}, keywords = {Adenosine Triphosphate, Autotrophic Processes, Clostridium, Energy Metabolism, Fructose, Gene Knockout Techniques, Genes, Essential, Nitrogen, Operon, Oxidoreductases, Proton-Motive Force}, issn = {2150-7511}, doi = {10.1128/mBio.00406-12}, author = {Tremblay, Pier-Luc and Zhang, Tian and Dar, Shabir A and Leang, Ching and Lovley, Derek R} } @article {422, title = {Genome diversity of the TetR family of transcriptional regulators in a metal-reducing bacterial family Geobacteraceae and other microbial species.}, journal = {OMICS}, volume = {15}, year = {2011}, month = {2011 Jul-Aug}, pages = {495-506}, abstract = {Members of the TetR family of bacterial transcriptional regulators affect expression of genes whose products are involved in a variety of important functions, including osmotic stress, catabolic pathways, homeostasis, biosynthesis of antibiotics, expression of efflux pumps, multidrug resistance, and virulence of pathogenic bacteria. We used genome sequence information to carry out phylogenetic classification of 864 TetR family members with a special focus on TetR regulators in Geobacteraceae, an environmentally important family of delta-Proteobacteria. The genome of Geobacter sulfurreducens, a model representative of Geobacteraceae, contains nine genes from the tetR family. Several of these genes are located immediately upstream of operons encoding functionally important c-type cytochromes. Computational analyses identified the presence of conserved promoters and other regulatory binding sites upstream of several G. sulfurreducens tetR genes. This suggests the possibility of an intermediary role of TetR family proteins in Geobacteraceae in regulatory cascades involving a variety of sigma factors. In order to understand the role of the TetR regulatory family in Geobacteraceae, we have inferred phylogenetic relationships among the Geobacteraceae TetR proteins and their homologs in other microbial species.}, keywords = {Bacterial Proteins, Binding Sites, Gram-Negative Bacteria, Metals, Oxidation-Reduction, Phylogeny, Promoter Regions, Genetic, Sigma Factor}, issn = {1557-8100}, doi = {10.1089/omi.2010.0117}, author = {Krushkal, Julia and Sontineni, Sreedhar and Leang, Ching and Qu, Yanhua and Adkins, Ronald M and Lovley, Derek R} } @article {418, title = {Tunable metallic-like conductivity in microbial nanowire networks.}, journal = {Nat Nanotechnol}, volume = {6}, year = {2011}, month = {2011 Sep}, pages = {573-9}, abstract = {Electronic nanostructures made from natural amino acids are attractive because of their relatively low cost, facile processing and absence of toxicity. However, most materials derived from natural amino acids are electronically insulating. Here, we report metallic-like conductivity in films of the bacterium Geobacter sulfurreducens and also in pilin nanofilaments (known as microbial nanowires) extracted from these bacteria. These materials have electronic conductivities of \~{}5~mS~cm(-1), which are comparable to those of synthetic metallic nanostructures. They can also conduct over distances on the centimetre scale, which is thousands of times the size of a bacterium. Moreover, the conductivity of the biofilm can be tuned by regulating gene expression, and also by varying the gate voltage in a transistor configuration. The conductivity of the nanofilaments has a temperature dependence similar to that of a disordered metal, and the conductivity could be increased by processing.}, keywords = {Electric Conductivity, Geobacter, Nanowires, Transistors, Electronic}, issn = {1748-3395}, doi = {10.1038/nnano.2011.119}, author = {Malvankar, Nikhil S and Vargas, Madeline and Nevin, Kelly P and Franks, Ashley E and Leang, Ching and Kim, Byoung-Chan and Inoue, Kengo and Mester, T{\"u}nde and Covalla, Sean F and Johnson, Jessica P and Rotello, Vincent M and Tuominen, Mark T and Lovley, Derek R} } @article {446, title = {Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens.}, journal = {Appl Environ Microbiol}, volume = {76}, year = {2010}, month = {2010 Jun}, pages = {4080-4}, abstract = {Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.}, keywords = {Cytochromes c, Ferric Compounds, Fimbriae, Bacterial, Geobacter, Immunohistochemistry, Microscopy, Immunoelectron}, issn = {1098-5336}, doi = {10.1128/AEM.00023-10}, author = {Leang, Ching and Qian, Xinlei and Mester, T{\"u}nde and Lovley, Derek R} } @article {431, title = {Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria.}, journal = {Science}, volume = {330}, year = {2010}, month = {2010 Dec 3}, pages = {1413-5}, abstract = {Microbial consortia that cooperatively exchange electrons play a key role in the anaerobic processing of organic matter. Interspecies hydrogen transfer is a well-documented strategy for electron exchange in dispersed laboratory cultures, but cooperative partners in natural environments often form multispecies aggregates. We found that laboratory evolution of a coculture of Geobacter metallireducens and Geobacter sulfurreducens metabolizing ethanol favored the formation of aggregates that were electrically conductive. Sequencing aggregate DNA revealed selection for a mutation that enhances the production of a c-type cytochrome involved in extracellular electron transfer and accelerates the formation of aggregates. Aggregate formation was also much faster in mutants that were deficient in interspecies hydrogen transfer, further suggesting direct interspecies electron transfer.}, keywords = {Anaerobiosis, Bacterial Proteins, Biological Evolution, Culture Media, Cytochrome c Group, Electron Transport, Electrons, Ethanol, Fimbriae Proteins, Geobacter, Hydrogen, Microbial Consortia, Microbial Interactions, Mutation, Oxidation-Reduction, Selection, Genetic}, issn = {1095-9203}, doi = {10.1126/science.1196526}, author = {Summers, Zarath M and Fogarty, Heather E and Leang, Ching and Franks, Ashley E and Malvankar, Nikhil S and Lovley, Derek R} } @article {473, title = {Diversity of promoter elements in a Geobacter sulfurreducens mutant adapted to disruption in electron transfer.}, journal = {Funct Integr Genomics}, volume = {9}, year = {2009}, month = {2009 Feb}, pages = {15-25}, abstract = {The delta-proteobacterium, Geobacter sulfurreducens, can obtain energy by coupling the oxidation of organic matter to the reduction of insoluble Fe(III) or the anode of a microbial fuel cell. Because Fe(III) oxide or the anode surface, in contrast to oxygen, nitrate, or sulfate, is not soluble nor can it be reduced readily, Geobacter species have developed mechanisms which allow electrons to be delivered across outer membrane to the cell surface. OmcB is an outer-membrane c-type cytochrome important for G. sulfurreducens Fe(III) respiration. In the absence of OmcB, cells lost the ability to reduce soluble or insoluble Fe(III). However, the omcB deletion mutant can slowly adapt to growth on soluble Fe(III) over prolonged incubation in the medium with acetate as the electron donor. We discuss available information about predicted or experimentally validated promoters and transcription regulatory sites identified upstream of operons with transcriptional expression significantly changed in the adapted omcB mutant. DNA sequences of upstream regions of coregulated operons in the adapted mutant are divergent, suggesting the presence of recognition sites for different transcriptional regulators and indicating that adaptation of the omcB mutant to growth on soluble Fe(III) has shifted the relevant expression networks involved to a more diverse molecular basis.}, keywords = {Adaptation, Physiological, Electron Transport, Genetic Variation, Geobacter, Mutation, Promoter Regions, Genetic}, issn = {1438-7948}, doi = {10.1007/s10142-008-0094-7}, author = {Krushkal, Julia and Leang, Ching and Barbe, Jose F and Qu, Yanhua and Yan, Bin and Puljic, Marko and Adkins, Ronald M and Lovley, Derek R} } @article {458, title = {Genome-wide analysis of the RpoN regulon in Geobacter sulfurreducens.}, journal = {BMC Genomics}, volume = {10}, year = {2009}, month = {2009}, pages = {331}, abstract = {BACKGROUND: The role of the RNA polymerase sigma factor RpoN in regulation of gene expression in Geobacter sulfurreducens was investigated to better understand transcriptional regulatory networks as part of an effort to develop regulatory modules for genome-scale in silico models, which can predict the physiological responses of Geobacter species during groundwater bioremediation or electricity production. RESULTS: An rpoN deletion mutant could not be obtained under all conditions tested. In order to investigate the regulon of the G. sulfurreducens RpoN, an RpoN over-expression strain was made in which an extra copy of the rpoN gene was under the control of a taclac promoter. Combining both the microarray transcriptome analysis and the computational prediction revealed that the G. sulfurreducens RpoN controls genes involved in a wide range of cellular functions. Most importantly, RpoN controls the expression of the dcuB gene encoding the fumarate/succinate exchanger, which is essential for cell growth with fumarate as the terminal electron acceptor in G. sulfurreducens. RpoN also controls genes, which encode enzymes for both pathways of ammonia assimilation that is predicted to be essential under all growth conditions in G. sulfurreducens. Other genes that were identified as part of the RpoN regulon using either the computational prediction or the microarray transcriptome analysis included genes involved in flagella biosynthesis, pili biosynthesis and genes involved in central metabolism enzymes and cytochromes involved in extracellular electron transfer to Fe(III), which are known to be important for growth in subsurface environment or electricity production in microbial fuel cells. The consensus sequence for the predicted RpoN-regulated promoter elements is TTGGCACGGTTTTTGCT. CONCLUSION: The G. sulfurreducens RpoN is an essential sigma factor and a global regulator involved in a complex transcriptional network controlling a variety of cellular processes.}, keywords = {Bacterial Proteins, DNA, Bacterial, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Genome-Wide Association Study, Geobacter, Multigene Family, Oligonucleotide Array Sequence Analysis, Promoter Regions, Genetic, Regulon, RNA Polymerase Sigma 54}, issn = {1471-2164}, doi = {10.1186/1471-2164-10-331}, author = {Leang, Ching and Krushkal, Julia and Ueki, Toshiyuki and Puljic, Marko and Sun, Jun and Ju{\'a}rez, Katy and N{\'u}{\~n}ez, Cinthia and Reguera, Gemma and DiDonato, Raymond and Postier, Bradley and Adkins, Ronald M and Lovley, Derek R} } @article {505, title = {Importance of c-Type cytochromes for U(VI) reduction by Geobacter sulfurreducens.}, journal = {BMC Microbiol}, volume = {7}, year = {2007}, month = {2007}, pages = {16}, abstract = {BACKGROUND: In order to study the mechanism of U(VI) reduction, the effect of deleting c-type cytochrome genes on the capacity of Geobacter sulfurreducens to reduce U(VI) with acetate serving as the electron donor was investigated. RESULTS: The ability of several c-type cytochrome deficient mutants to reduce U(VI) was lower than that of the wild type strain. Elimination of two confirmed outer membrane cytochromes and two putative outer membrane cytochromes significantly decreased (ca. 50-60\%) the ability of G. sulfurreducens to reduce U(VI). Involvement in U(VI) reduction did not appear to be a general property of outer membrane cytochromes, as elimination of two other confirmed outer membrane cytochromes, OmcB and OmcC, had very little impact on U(VI) reduction. Among the periplasmic cytochromes, only MacA, proposed to transfer electrons from the inner membrane to the periplasm, appeared to play a significant role in U(VI) reduction. A subpopulation of both wild type and U(VI) reduction-impaired cells, 24-30\%, accumulated amorphous uranium in the periplasm. Comparison of uranium-accumulating cells demonstrated a similar amount of periplasmic uranium accumulation in U(VI) reduction-impaired and wild type G. sulfurreducens. Assessment of the ability of the various suspensions to reduce Fe(III) revealed no correlation between the impact of cytochrome deletion on U(VI) reduction and reduction of Fe(III) hydroxide and chelated Fe(III). CONCLUSION: This study indicates that c-type cytochromes are involved in U(VI) reduction by Geobacter sulfurreducens. The data provide new evidence for extracellular uranium reduction by G. sulfurreducens but do not rule out the possibility of periplasmic uranium reduction. Occurrence of U(VI) reduction at the cell surface is supported by the significant impact of elimination of outer membrane cytochromes on U(VI) reduction and the lack of correlation between periplasmic uranium accumulation and the capacity for uranium reduction. Periplasmic uranium accumulation may reflect the ability of uranium to penetrate the outer membrane rather than the occurrence of enzymatic U(VI) reduction. Elimination of cytochromes rarely had a similar impact on both Fe(III) and U(VI) reduction, suggesting that there are differences in the routes of electron transfer to U(VI) and Fe(III). Further studies are required to clarify the pathways leading to U(VI) reduction in G. sulfurreducens.}, keywords = {Biodegradation, Environmental, Cytochrome c Group, Ferric Compounds, Geobacter, Microscopy, Electron, Transmission, Mutation, Oxidation-Reduction, Periplasm, Uranium}, issn = {1471-2180}, doi = {10.1186/1471-2180-7-16}, author = {Shelobolina, Evgenya S and Coppi, Maddalena V and Korenevsky, Anton A and DiDonato, Laurie N and Sullivan, Sara A and Konishi, Hiromi and Xu, Huifang and Leang, Ching and Butler, Jessica E and Kim, Byoung-Chan and Lovley, Derek R} } @article {499, title = {Involvement of Geobacter sulfurreducens SfrAB in acetate metabolism rather than intracellular, respiration-linked Fe(III) citrate reduction.}, journal = {Microbiology}, volume = {153}, year = {2007}, month = {2007 Oct}, pages = {3572-85}, abstract = {A soluble ferric reductase, SfrAB, which catalysed the NADPH-dependent reduction of chelated Fe(III), was previously purified from the dissimilatory Fe(III)-reducing micro-organism Geobacter sulfurreducens, suggesting that reduction of chelated forms of Fe(III) might be cytoplasmic. However, metabolically active spheroplast suspensions could not catalyse acetate-dependent Fe(III) citrate reduction, indicating that periplasmic and/or outer-membrane components were required for Fe(III) citrate reduction. Furthermore, phenotypic analysis of an SfrAB knockout mutant suggested that SfrAB was involved in acetate metabolism rather than respiration-linked Fe(III) reduction. The mutant could not grow via the reduction of either Fe(III) citrate or fumarate when acetate was the electron donor but could grow with either acceptor if either hydrogen or formate served as the electron donor. Following prolonged incubation in acetate : fumarate medium in the absence of hydrogen and formate, an {\textquoteright}acetate-adapted{\textquoteright} SfrAB-null strain was isolated that was capable of growth on acetate : fumarate medium but not acetate : Fe(III) citrate medium. Comparison of gene expression in this strain with that of the wild-type revealed upregulation of a potential NADPH-dependent ferredoxin oxidoreductase as well as genes involved in energy generation and amino acid uptake, suggesting that NADPH homeostasis and the tricarboxylic acid (TCA) cycle were perturbed in the {\textquoteright}acetate-adapted{\textquoteright} SfrAB-null strain. Membrane and soluble fractions prepared from the {\textquoteright}acetate-adapted{\textquoteright} strain were depleted of NADPH-dependent Fe(III), viologen and quinone reductase activities. These results indicate that cytoplasmic, respiration-linked reduction of Fe(III) by SfrAB in vivo is unlikely and suggest that deleting SfrAB may interfere with growth via acetate oxidation by interfering with NADP regeneration.}, keywords = {Acetates, Amino Acid Transport Systems, Bacterial Proteins, Cell Membrane, Citric Acid Cycle, Cytoplasm, Energy Metabolism, Ferric Compounds, Formic Acids, Fumarates, Gene Deletion, Gene Expression Profiling, Geobacter, Hydrogen, NADH, NADPH Oxidoreductases, Oligonucleotide Array Sequence Analysis}, issn = {1350-0872}, doi = {10.1099/mic.0.2007/006478-0}, author = {Coppi, Maddalena V and O{\textquoteright}Neil, Regina A and Leang, Ching and Kaufmann, Franz and Meth{\'e}, Barbara A and Nevin, Kelly P and Woodard, Trevor L and Liu, Anna and Lovley, Derek R} } @article {521, title = {Two putative c-type multiheme cytochromes required for the expression of OmcB, an outer membrane protein essential for optimal Fe(III) reduction in Geobacter sulfurreducens.}, journal = {J Bacteriol}, volume = {188}, year = {2006}, month = {2006 Apr}, pages = {3138-42}, abstract = {Deletion of two homologous Geobacter sulfurreducens c-type cytochrome genes, omcG and omcH, decreased the rate of Fe(III) reduction and decreased the level of an outer membrane cytochrome critical for Fe(III) reduction, OmcB, without affecting its transcription. Expression of either gene restored Fe(III) reduction and OmcB expression, suggesting functional similarity.}, keywords = {Bacterial Outer Membrane Proteins, Bacterial Proteins, Blotting, Northern, Blotting, Western, Cytochromes c, Ferric Compounds, Gene Deletion, Gene Expression, Genes, Bacterial, Geobacter, Oxidation-Reduction, RNA, Bacterial, RNA, Messenger}, issn = {0021-9193}, doi = {10.1128/JB.188.8.3138-3142.2006}, author = {Kim, Byoung-Chan and Qian, Xinlei and Leang, Ching and Coppi, Maddalena V and Lovley, Derek R} } @article {531, title = {Adaptation to disruption of the electron transfer pathway for Fe(III) reduction in Geobacter sulfurreducens.}, journal = {J Bacteriol}, volume = {187}, year = {2005}, month = {2005 Sep}, pages = {5918-26}, abstract = {Previous studies demonstrated that an outer membrane c-type cytochrome, OmcB, was involved in Fe(III) reduction in Geobacter sulfurreducens. An OmcB-deficient mutant was greatly impaired in its ability to reduce both soluble and insoluble Fe(III). Reintroducing omcB restored the capacity for Fe(III) reduction at a level proportional to the level of OmcB production. Here, we report that the OmcB-deficient mutant gradually adapted to grow on soluble Fe(III) but not insoluble Fe(III). The adapted OmcB-deficient mutant reduced soluble Fe(III) at a rate comparable to that of the wild type, but the cell yield of the mutant was only ca. 60\% of that of the wild type under steady-state culturing conditions. Analysis of proteins and transcript levels demonstrated that expression of several membrane-associated cytochromes was higher in the adapted mutant than in the wild type. Further comparison of transcript levels during steady-state growth on Fe(III) citrate with a whole-genome DNA microarray revealed a significant shift in gene expression in an apparent attempt to adapt metabolism to the impaired electron transport to Fe(III). These results demonstrate that, although there are many other membrane-bound c-type cytochromes in G. sulfurreducens, increased expression of these cytochromes cannot completely compensate for the loss of OmcB. The concept that outer membrane cytochromes are promiscuous reductases that are interchangeable in function appears to be incorrect. Furthermore, the results indicate that there may be different mechanisms for electron transfer to soluble Fe(III) and insoluble Fe(III) oxides in G. sulfurreducens, which emphasizes the importance of studying electron transport to the environmentally relevant Fe(III) oxides.}, keywords = {Adaptation, Physiological, Bacterial Outer Membrane Proteins, Base Sequence, Cytochromes c, DNA Primers, Electron Transport, Ferric Compounds, Gene Expression Regulation, Bacterial, Geobacter, Kinetics, Oxidation-Reduction, Reverse Transcriptase Polymerase Chain Reaction}, issn = {0021-9193}, doi = {10.1128/JB.187.17.5918-5926.2005}, author = {Leang, Ching and Adams, L A and Chin, K-J and Nevin, K P and Meth{\'e}, B A and Webster, J and Sharma, M L and Lovley, D R} } @article {536, title = {OmcF, a putative c-Type monoheme outer membrane cytochrome required for the expression of other outer membrane cytochromes in Geobacter sulfurreducens.}, journal = {J Bacteriol}, volume = {187}, year = {2005}, month = {2005 Jul}, pages = {4505-13}, abstract = {Outer membrane cytochromes are often proposed as likely agents for electron transfer to extracellular electron acceptors, such as Fe(III). The omcF gene in the dissimilatory Fe(III)-reducing microorganism Geobacter sulfurreducens is predicted to code for a small outer membrane monoheme c-type cytochrome. An OmcF-deficient strain was constructed, and its ability to reduce and grow on Fe(III) citrate was found to be impaired. Following a prolonged lag phase (150 h), the OmcF-deficient strain developed the ability to grow in Fe(III) citrate medium with doubling times and yields that were ca. 145\% and 70\% of those of the wild type, respectively. Comparison of the c-type cytochrome contents of outer membrane-enriched fractions prepared from wild-type and OmcF-deficient cultures confirmed the outer membrane association of OmcF and revealed multiple changes in the cytochrome content of the OmcF-deficient strain. These changes included loss of expression of two previously characterized outer membrane cytochromes, OmcB and OmcC, and overexpression of a third previously characterized outer membrane cytochrome, OmcS, during growth on Fe(III) citrate. The omcB and omcC transcripts could not be detected in the OmcF-deficient mutant by either reverse transcriptase PCR or Northern blot analyses. Expression of the omcF gene in trans restored both the capacity of the OmcF-deficient mutant to reduce Fe(III) and wild-type levels of omcB and omcC mRNA and protein. Thus, elimination of OmcF may impair Fe(III) reduction by influencing expression of OmcB, which has previously been demonstrated to play a critical role in Fe(III) reduction.}, keywords = {Amino Acid Sequence, Bacterial Outer Membrane Proteins, Cytochromes c, Ferric Compounds, Gene Deletion, Gene Expression Regulation, Bacterial, Geobacter, Molecular Sequence Data, Oxidation-Reduction, Sequence Alignment}, issn = {0021-9193}, doi = {10.1128/JB.187.13.4505-4513.2005}, author = {Kim, Byoung-Chan and Leang, Ching and Ding, Yan-Huai R and Glaven, Richard H and Coppi, Maddalena V and Lovley, Derek R} } @article {537, title = {Regulation of two highly similar genes, omcB and omcC, in a 10 kb chromosomal duplication in Geobacter sulfurreducens.}, journal = {Microbiology}, volume = {151}, year = {2005}, month = {2005 Jun}, pages = {1761-7}, abstract = {The Fe(III)-reducing micro-organism Geobacter sulfurreducens requires an outer-membrane c-type cytochrome, OmcB, for Fe(III) reduction, but a related cytochrome, OmcC, which is 73 \% identical to OmcB, is not required. The omcB and omcC genes are part of a tandem chromosomal duplication consisting of two repeated clusters of four genes. The 2.7 kb sequences preceding omcB and omcC are identical with the exception of a single base pair change. Studies that combined genetic, Northern blotting and primer extension analyses demonstrated that both omcB and omcC are transcribed as monocistronic and polycistronic (orf1-orf2-omcB/omcC) transcripts. All of the promoters for the various transcripts were found to be located within the 2.7 kb identical region upstream of omcB and omcC. The sequences of the promoter regions for the two monocistronic transcripts are identical and equidistant from the omcB or omcC start codons. The promoters for the two polycistronic transcripts, in contrast, are distinct. One is specific for transcription of orf1-orf2-omcB and the other is associated with transcription of orf1-orf2-omcC. Studies with an RpoS-deficient mutant suggested that transcription from all four promoters is RpoS dependent under one or more growth conditions. Deletion of orfR, a gene immediately upstream of orf1-orf2-omcB that encodes a putative transcriptional regulator, significantly lowered the omcB transcription when Fe(III) was the electron acceptor and partially inhibited Fe(III) reduction. In contrast, levels of omcC transcripts were unaffected in the orfR mutant. These results indicate that omcB and omcC operons represent a rare instance in which duplicated operons, located in tandem on the chromosome, have different transcriptional regulation.}, keywords = {Bacterial Outer Membrane Proteins, Bacterial Proteins, Blotting, Northern, DNA, Bacterial, Gene Deletion, Gene Expression Regulation, Bacterial, Geobacter, Molecular Sequence Data, Operon, Promoter Regions, Genetic, RNA, Bacterial, RNA, Messenger, Sequence Analysis, DNA, Sigma Factor, Transcription, Genetic}, issn = {1350-0872}, doi = {10.1099/mic.0.27870-0}, author = {Leang, Ching and Lovley, Derek R} } @article {548, title = {Direct correlation between rates of anaerobic respiration and levels of mRNA for key respiratory genes in Geobacter sulfurreducens.}, journal = {Appl Environ Microbiol}, volume = {70}, year = {2004}, month = {2004 Sep}, pages = {5183-9}, abstract = {The predominance of Geobacter species in environments in which Fe(III) reduction is important has suggested that Fe(III) reduction rates might be estimated in Geobacter-dominated environments by assessing in situ activity with molecular techniques. To determine whether mRNA levels of key respiratory genes might be correlated with respiration rates in Geobacter sulfurreducens, studies were conducted with fumarate as the electron acceptor and acetate as the limiting electron donor in anaerobic continuous cultures. Levels of mRNA for a fumarate reductase gene, frdA, quantified by real-time reverse transcription-PCR were directly correlated with fumarate reduction rates. In similar studies with Fe(III) as the electron acceptor, mRNA levels for omcB, a gene for an outer membrane c-type cytochrome involved in Fe(III) reduction, were positively correlated with Fe(III) reduction rates. Levels of mRNA for frdA and omcB were also positively correlated with fumarate and Fe(III) reduction rates, respectively, when growth was limited by the availability of fumarate or Fe(III), but mRNA levels were higher than in acetate-limited cultures. Levels of mRNA for omcC, which encodes a c-type cytochrome highly similar to OmcB but not necessary for Fe(III) reduction, followed patterns different than those of omcB. This agrees with the previous finding that OmcC is not involved in Fe(III) reduction and suggests that changes in mRNA levels of omcB are related to its role in Fe(III) reduction. These results demonstrate that mRNA levels for respiratory genes might be used to estimate in situ Fe(III) reduction rates in Geobacter-dominated environments but suggest that information on environmental conditions and/or the metabolic state of Geobacter species is also required for accurate rate estimates.}, keywords = {Anaerobiosis, Base Sequence, DNA Primers, Geobacter, Kinetics, Oxygen Consumption, Polymerase Chain Reaction, RNA, Messenger}, issn = {0099-2240}, doi = {10.1128/AEM.70.9.5183-5189.2004}, author = {Chin, Kuk-Jeong and Esteve-N{\'u}{\~n}ez, Abraham and Leang, Ching and Lovley, Derek R} } @article {576, title = {Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens.}, journal = {Biochem J}, volume = {369}, year = {2003}, month = {2003 Jan 1}, pages = {153-61}, abstract = {A 9.6 kDa periplasmic c -type cytochrome, designated PpcA, was purified from the Fe(III)-reducing bacterium Geobacter sulfurreducens and characterized. The purified protein is basic (pI 9.5), contains three haems and has an N-terminal amino acid sequence closely related to those of the previously described trihaem c (7) cytochromes of Geobacter metallireducens and Desulfuromonas acetoxidans. The gene encoding PpcA was identified from the G. sulfurreducens genome using the N-terminal sequence, and encodes a protein of 71 amino acids (molecular mass 9.58 kDa) with 49\% identity to the c (7) cytochrome of D. acetoxidans. In order to determine the physiological role of PpcA, a knockout mutant was prepared with a single-step recombination method. Acetate-dependent Fe(III) reduction was significantly inhibited in both growing cultures and cell suspensions of the mutant. When ppcA was expressed in trans, the full capacity for Fe(III) reduction with acetate was restored. The transfer of electrons from acetate to anthraquinone 2,6-disulphonate (AQDS; a humic acid analogue) and to U(VI) was also compromised in the mutant, but acetate-dependent reduction of fumarate was not altered. The rates of reduction of Fe(III), AQDS, U(VI) and fumarate were also the same in the wild type and ppcA mutant when hydrogen was supplied as the electron donor. When taken together with previous studies on other electron transport proteins in G. sulfurreducens, these results suggest that PpcA serves as an intermediary electron carrier from acetate to terminal Fe(III) reductases in the outer membrane, and is also involved in the transfer of electrons from acetate to U(VI) and humics.}, keywords = {Amino Acid Sequence, Base Sequence, Cytochrome c Group, DNA, Bacterial, Molecular Sequence Data, Periplasm, Proteobacteria, Sequence Homology, Amino Acid}, issn = {0264-6021}, doi = {10.1042/BJ20020597}, author = {Lloyd, Jon R and Leang, Ching and Hodges Myerson, Allison L and Coppi, Maddalena V and Cuifo, Stacey and Methe, Barb and Sandler, Steven J and Lovley, Derek R} } @article {571, title = {OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens.}, journal = {J Bacteriol}, volume = {185}, year = {2003}, month = {2003 Apr}, pages = {2096-103}, abstract = {Microorganisms in the family Geobacteraceae are the predominant Fe(III)-reducing microorganisms in a variety of subsurface environments in which Fe(III) reduction is an important process, but little is known about the mechanisms for electron transport to Fe(III) in these organisms. The Geobacter sulfurreducens genome was found to contain a 10-kb chromosomal duplication consisting of two tandem three-gene clusters. The last genes of the two clusters, designated omcB and omcC, encode putative outer membrane polyheme c-type cytochromes which are 79\% identical. The role of the omcB and omcC genes in Fe(III) reduction in G. sulfurreducens was investigated. OmcB and OmcC were both expressed during growth with acetate as the electron donor and either fumarate or Fe(III) as the electron acceptor. OmcB was ca. twofold more abundant under both conditions. Disrupting omcB or omcC by gene replacement had no impact on growth with fumarate. However, the OmcB-deficient mutant was greatly impaired in its ability to reduce Fe(III) both in cell suspensions and under growth conditions. In contrast, the ability of the OmcC-deficient mutant to reduce Fe(III) was similar to that of the wild type. When omcB was reintroduced into the OmcB-deficient mutant, the capacity for Fe(III) reduction was restored in proportion to the level of OmcB production. These results indicate that OmcB, but not OmcC, has a major role in electron transport to Fe(III) and suggest that electron transport to the outer membrane is an important feature in Fe(III) reduction in this organism.}, keywords = {Amino Acid Sequence, Bacterial Outer Membrane Proteins, Bacterial Proteins, Cytochrome c Group, Deltaproteobacteria, Gene Expression Regulation, Bacterial, Iron, Molecular Sequence Data, Multigene Family, Mutation, Oxidation-Reduction, Sequence Homology, Amino Acid}, issn = {0021-9193}, author = {Leang, Ching and Coppi, M V and Lovley, D R} }