@article {3086, title = {Transcriptomic profiles of Clostridium ljungdahlii during lithotrophic growth with syngas or H and CO compared to organotrophic growth with fructose.}, journal = {Sci Rep}, volume = {7}, year = {2017}, month = {2017 Oct 13}, pages = {13135}, abstract = {

Clostridium ljungdahlii derives energy by lithotrophic and organotrophic acetogenesis. C. ljungdahlii was grown organotrophically with fructose and also lithotrophically, either with syngas - a gas mixture containing hydrogen (H), carbon dioxide (CO), and carbon monoxide (CO), or with H and CO. Gene expression was compared quantitatively by microarrays using RNA extracted from all three conditions. Gene expression with fructose and with H/CO was compared by RNA-Seq. Upregulated genes with both syngas and H/CO (compared to fructose) point to the urea cycle, uptake and degradation of peptides and amino acids, response to sulfur starvation, potentially NADPH-producing pathways involving (S)-malate and ornithine, quorum sensing, sporulation, and cell wall remodeling, suggesting a global and multicellular response to lithotrophic conditions. With syngas, the upregulated (R)-lactate dehydrogenase gene represents a route of electron transfer from ferredoxin to NAD. With H/CO, flavodoxin and histidine biosynthesis genes were upregulated. Downregulated genes corresponded to an intracytoplasmic microcompartment for disposal of methylglyoxal, a toxic byproduct of glycolysis, as 1-propanol. Several cytoplasmic and membrane-associated redox-active protein genes were differentially regulated. The transcriptomic profiles of C. ljungdahlii in lithotrophic and organotrophic growth modes indicate large-scale physiological and metabolic differences, observations that may guide biofuel and commodity chemical production with this species.

}, keywords = {Carbon Dioxide, Carbon Monoxide, Clostridium, Fructose, Hydrogen, NADP, Transcriptome}, issn = {2045-2322}, doi = {10.1038/s41598-017-12712-w}, author = {Aklujkar, Muktak and Leang, Ching and Shrestha, Pravin M and Shrestha, Minita and Lovley, Derek R} } @article {3129, title = {The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu.}, journal = {Nucleic Acids Res}, volume = {42}, year = {2014}, month = {2014 Jun}, pages = {6487-96}, abstract = {

Dnmt2 enzymes are conserved in eukaryotes, where they methylate C38 of tRNA-Asp with high activity. Here, the activity of one of the very few prokaryotic Dnmt2 homologs from Geobacter species (GsDnmt2) was investigated. GsDnmt2 was observed to methylate tRNA-Asp from flies and mice. Unexpectedly, it had only a weak activity toward its matching Geobacter tRNA-Asp, but methylated Geobacter tRNA-Glu with good activity. In agreement with this result, we show that tRNA-Glu is methylated in Geobacter while the methylation is absent in tRNA-Asp. The activities of Dnmt2 enzymes from Homo sapiens, Drosophila melanogaster, Schizosaccharomyces pombe and Dictyostelium discoideum for methylation of the Geobacter tRNA-Asp and tRNA-Glu were determined showing that all these Dnmt2s preferentially methylate tRNA-Asp. Hence, the GsDnmt2 enzyme has a swapped transfer ribonucleic acid (tRNA) specificity. By comparing the different tRNAs, a characteristic sequence pattern was identified in the variable loop of all preferred tRNA substrates. An exchange of two nucleotides in the variable loop of murine tRNA-Asp converted it to the corresponding variable loop of tRNA-Glu and led to a strong reduction of GsDnmt2 activity. Interestingly, the same loss of activity was observed with human DNMT2, indicating that the variable loop functions as a specificity determinant in tRNA recognition of Dnmt2 enzymes.

}, keywords = {Animals, Bacterial Proteins, Geobacter, Humans, Methylation, Mice, Nucleic Acid Conformation, RNA, Transfer, Asp, RNA, Transfer, Glu, Substrate Specificity, tRNA Methyltransferases}, issn = {1362-4962}, doi = {10.1093/nar/gku256}, author = {Shanmugam, Raghuvaran and Aklujkar, Muktak and Sch{\"a}fer, Matthias and Reinhardt, Richard and Nickel, Olaf and Reuter, Gunter and Lovley, Derek R and Ehrenhofer-Murray, Ann and Nellen, Wolfgang and Ankri, Serge and Helm, Mark and Jurkowski, Tomasz P and Jeltsch, Albert} } @article {3134, title = {Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange.}, journal = {Environ Microbiol Rep}, volume = {5}, year = {2013}, month = {2013 Dec}, pages = {904-10}, abstract = {

Direct interspecies electron transfer (DIET) through biological electrical connections is an alternative to interspecies H2 transfer as a mechanism for electron exchange in syntrophic cultures. However, it has not previously been determined whether electrons received via DIET yield energy to support cell growth. In order to investigate this, co-cultures of Geobacter metallireducens, which can transfer electrons to wild-type G. sulfurreducens via DIET, were established with a citrate synthase-deficient G. sulfurreducens strain that can receive electrons for respiration through DIET only. In a medium with ethanol as the electron donor and fumarate as the electron acceptor, co-cultures with the citrate synthase-deficient G. sulfurreducens strain metabolized ethanol as fast as co-cultures with wild-type, but the acetate that G. metallireducens generated from ethanol oxidation accumulated. The lack of acetate metabolism resulted in less fumarate reduction and lower cell abundance of G. sulfurreducens. RNAseq analysis of transcript abundance was consistent with a lack of acetate metabolism in G. sulfurreducens and revealed gene expression levels for the uptake hydrogenase, formate dehydrogenase, the pilus-associated c-type cytochrome OmcS and pili consistent with electron transfer via DIET. These results suggest that electrons transferred via DIET can serve as the sole energy source to support anaerobic respiration.

}, keywords = {Acetates, Anaerobiosis, Citrate (si)-Synthase, Cytochrome c Group, Electron Transport, Electrons, Energy Metabolism, Ethanol, Fimbriae, Bacterial, Formate Dehydrogenases, Fumarates, Geobacter, Oxidation-Reduction}, issn = {1758-2229}, doi = {10.1111/1758-2229.12093}, author = {Shrestha, Pravin Malla and Rotaru, Amelia-Elena and Aklujkar, Muktak and Liu, Fanghua and Shrestha, Minita and Summers, Zarath M and Malvankar, Nikhil and Flores, Dan Carlo and Lovley, Derek R} } @article {3156, title = {Comparative genomic analysis of Geobacter sulfurreducens KN400, a strain with enhanced capacity for extracellular electron transfer and electricity production.}, journal = {BMC Genomics}, volume = {13}, year = {2012}, month = {2012 Sep 12}, pages = {471}, abstract = {

BACKGROUND: A new strain of Geobacter sulfurreducens, strain KN400, produces more electrical current in microbial fuel cells and reduces insoluble Fe(III) oxides much faster than the wildtype strain, PCA. The genome of KN400 was compared to wildtype with the goal of discovering how the network for extracellular electron transfer has changed and how these two strains evolved.

RESULTS: Both genomes were re-annotated, resulting in 14 fewer genes (net) in the PCA genome; 28 fewer (net) in the KN400 genome; and ca. 400 gene start and stop sites moved. 96\% of genes in KN400 had clear orthologs with conserved synteny in PCA. Most of the remaining genes were in regions of genomic mobility and were strain-specific or conserved in other Geobacteraceae, indicating that the changes occurred post-divergence. There were 27,270 single nucleotide polymorphisms (SNP) between the genomes. There was significant enrichment for SNP locations in non-coding or synonymous amino acid sites, indicating significant selective pressure since the divergence. 25\% of orthologs had sequence differences, and this set was enriched in phosphorylation and ATP-dependent enzymes. Substantial sequence differences (at least 12 non-synonymous SNP/kb) were found in 3.6\% of the orthologs, and this set was enriched in cytochromes and integral membrane proteins. Genes known to be involved in electron transport, those used in the metabolic cell model, and those that exhibit changes in expression during growth in microbial fuel cells were examined in detail.

CONCLUSIONS: The improvement in external electron transfer in the KN400 strain does not appear to be due to novel gene acquisition, but rather to changes in the common metabolic network. The increase in electron transfer rate and yield in KN400 may be due to changes in carbon flux towards oxidation pathways and to changes in ATP metabolism, both of which indicate that the overall energy state of the cell may be different. The electrically conductive pili appear to be unchanged, but cytochrome folding, localization, and redox potentials may all be affected, which would alter the electrical connection between the cell and the substrate.

}, keywords = {Bioelectric Energy Sources, Comparative Genomic Hybridization, Electron Transport, Gene Expression Regulation, Bacterial, Genome, Bacterial, Geobacter, Metabolic Networks and Pathways, Molecular Sequence Annotation, Polymorphism, Single Nucleotide}, issn = {1471-2164}, doi = {10.1186/1471-2164-13-471}, author = {Butler, Jessica E and Young, Nelson D and Aklujkar, Muktak and Lovley, Derek R} } @article {3149, title = {The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features.}, journal = {BMC Genomics}, volume = {13}, year = {2012}, month = {2012 Dec 10}, pages = {690}, abstract = {

BACKGROUND: The bacterium Pelobacter carbinolicus is able to grow by fermentation, syntrophic hydrogen/formate transfer, or electron transfer to sulfur from short-chain alcohols, hydrogen or formate; it does not oxidize acetate and is not known to ferment any sugars or grow autotrophically. The genome of P. carbinolicus was sequenced in order to understand its metabolic capabilities and physiological features in comparison with its relatives, acetate-oxidizing Geobacter species.

RESULTS: Pathways were predicted for catabolism of known substrates: 2,3-butanediol, acetoin, glycerol, 1,2-ethanediol, ethanolamine, choline and ethanol. Multiple isozymes of 2,3-butanediol dehydrogenase, ATP synthase and [FeFe]-hydrogenase were differentiated and assigned roles according to their structural properties and genomic contexts. The absence of asparagine synthetase and the presence of a mutant tRNA for asparagine encoded among RNA-active enzymes suggest that P. carbinolicus may make asparaginyl-tRNA in a novel way. Catabolic glutamate dehydrogenases were discovered, implying that the tricarboxylic acid (TCA) cycle can function catabolically. A phosphotransferase system for uptake of sugars was discovered, along with enzymes that function in 2,3-butanediol production. Pyruvate:ferredoxin/flavodoxin oxidoreductase was identified as a potential bottleneck in both the supply of oxaloacetate for oxidation of acetate by the TCA cycle and the connection of glycolysis to production of ethanol. The P. carbinolicus genome was found to encode autotransporters and various appendages, including three proteins with similarity to the geopilin of electroconductive nanowires.

CONCLUSIONS: Several surprising metabolic capabilities and physiological features were predicted from the genome of P. carbinolicus, suggesting that it is more versatile than anticipated.

}, keywords = {Base Pairing, Base Sequence, Butylene Glycols, Choline, Deltaproteobacteria, Ethanolamine, Ethylene Glycol, Genome, Bacterial, Glycerol, Metabolic Networks and Pathways, Molecular Sequence Annotation, Molecular Sequence Data, Mutation, Oxidation-Reduction, Oxidoreductases, Propylene Glycols, RNA, Transfer, Asn, Sequence Analysis, DNA}, issn = {1471-2164}, doi = {10.1186/1471-2164-13-690}, author = {Aklujkar, Muktak and Haveman, Shelley A and DiDonato, Raymond and Chertkov, Olga and Han, Cliff S and Land, Miriam L and Brown, Peter and Lovley, Derek R} } @article {415, title = {Geobacter: the microbe electric{\textquoteright}s physiology, ecology, and practical applications.}, journal = {Adv Microb Physiol}, volume = {59}, year = {2011}, month = {2011}, pages = {1-100}, abstract = {Geobacter species specialize in making electrical contacts with extracellular electron acceptors and other organisms. This permits Geobacter species to fill important niches in a diversity of anaerobic environments. Geobacter species appear to be the primary agents for coupling the oxidation of organic compounds to the reduction of insoluble Fe(III) and Mn(IV) oxides in many soils and sediments, a process of global biogeochemical significance. Some Geobacter species can anaerobically oxidize aromatic hydrocarbons and play an important role in aromatic hydrocarbon removal from contaminated aquifers. The ability of Geobacter species to reductively precipitate uranium and related contaminants has led to the development of bioremediation strategies for contaminated environments. Geobacter species produce higher current densities than any other known organism in microbial fuel cells and are common colonizers of electrodes harvesting electricity from organic wastes and aquatic sediments. Direct interspecies electron exchange between Geobacter species and syntrophic partners appears to be an important process in anaerobic wastewater digesters. Functional and comparative genomic studies have begun to reveal important aspects of Geobacter physiology and regulation, but much remains unexplored. Quantifying key gene transcripts and proteins of subsurface Geobacter communities has proven to be a powerful approach to diagnose the in situ physiological status of Geobacter species during groundwater bioremediation. The growth and activity of Geobacter species in the subsurface and their biogeochemical impact under different environmental conditions can be predicted with a systems biology approach in which genome-scale metabolic models are coupled with appropriate physical/chemical models. The proficiency of Geobacter species in transferring electrons to insoluble minerals, electrodes, and possibly other microorganisms can be attributed to their unique "microbial nanowires," pili that conduct electrons along their length with metallic-like conductivity. Surprisingly, the abundant c-type cytochromes of Geobacter species do not contribute to this long-range electron transport, but cytochromes are important for making the terminal electrical connections with Fe(III) oxides and electrodes and also function as capacitors, storing charge to permit continued respiration when extracellular electron acceptors are temporarily unavailable. The high conductivity of Geobacter pili and biofilms and the ability of biofilms to function as supercapacitors are novel properties that might contribute to the field of bioelectronics. The study of Geobacter species has revealed a remarkable number of microbial physiological properties that had not previously been described in any microorganism. Further investigation of these environmentally relevant and physiologically unique organisms is warranted.}, keywords = {Biotechnology, Ecology, Environmental Remediation, Ferric Compounds, Geobacter}, issn = {0065-2911}, doi = {10.1016/B978-0-12-387661-4.00004-5}, author = {Lovley, Derek R and Ueki, Toshiyuki and Zhang, Tian and Malvankar, Nikhil S and Shrestha, Pravin M and Flanagan, Kelly A and Aklujkar, Muktak and Butler, Jessica E and Giloteaux, Ludovic and Rotaru, Amelia-Elena and Holmes, Dawn E and Franks, Ashley E and Orellana, Roberto and Risso, Carla and Nevin, Kelly P} } @article {434, title = {The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments.}, journal = {BMC Genomics}, volume = {11}, year = {2010}, month = {2010}, pages = {490}, abstract = {BACKGROUND: Geobacter species in a phylogenetic cluster known as subsurface clade 1 are often the predominant microorganisms in subsurface environments in which Fe(III) reduction is the primary electron-accepting process. Geobacter bemidjiensis, a member of this clade, was isolated from hydrocarbon-contaminated subsurface sediments in Bemidji, Minnesota, and is closely related to Geobacter species found to be abundant at other subsurface sites. This study examines whether there are significant differences in the metabolism and physiology of G. bemidjiensis compared to non-subsurface Geobacter species. RESULTS: Annotation of the genome sequence of G. bemidjiensis indicates several differences in metabolism compared to previously sequenced non-subsurface Geobacteraceae, which will be useful for in silico metabolic modeling of subsurface bioremediation processes involving Geobacter species. Pathways can now be predicted for the use of various carbon sources such as propionate by G. bemidjiensis. Additional metabolic capabilities such as carbon dioxide fixation and growth on glucose were predicted from the genome annotation. The presence of different dicarboxylic acid transporters and two oxaloacetate decarboxylases in G. bemidjiensis may explain its ability to grow by disproportionation of fumarate. Although benzoate is the only aromatic compound that G. bemidjiensis is known or predicted to utilize as an electron donor and carbon source, the genome suggests that this species may be able to detoxify other aromatic pollutants without degrading them. Furthermore, G. bemidjiensis is auxotrophic for 4-aminobenzoate, which makes it the first Geobacter species identified as having a vitamin requirement. Several features of the genome indicated that G. bemidjiensis has enhanced abilities to respire, detoxify and avoid oxygen. CONCLUSION: Overall, the genome sequence of G. bemidjiensis offers surprising insights into the metabolism and physiology of Geobacteraceae in subsurface environments, compared to non-subsurface Geobacter species, such as the ability to disproportionate fumarate, more efficient oxidation of propionate, enhanced responses to oxygen stress, and dependence on the environment for a vitamin requirement. Therefore, an understanding of the activity of Geobacter species in the subsurface is more likely to benefit from studies of subsurface isolates such as G. bemidjiensis than from the non-subsurface model species studied so far.}, keywords = {Aldehyde Oxidoreductases, Biodegradation, Environmental, Carbohydrate Metabolism, Carbon Dioxide, Cell Wall, Electrons, Environmental Microbiology, Fatty Acids, Frameshift Mutation, Fumarates, Genes, Bacterial, Genome, Bacterial, Geobacter, Glucose, Iron, Metabolic Networks and Pathways, Multienzyme Complexes, Multigene Family, Osmosis, Oxidation-Reduction, Oxo-Acid-Lyases, Propionic Acids, Pyruvic Acid, Species Specificity, Surface Properties}, issn = {1471-2164}, doi = {10.1186/1471-2164-11-490}, author = {Aklujkar, Muktak and Young, Nelson D and Holmes, Dawn and Chavan, Milind and Risso, Carla and Kiss, Hajnalka E and Han, Cliff S and Land, Miriam L and Lovley, Derek R} } @article {439, title = {Interference with histidyl-tRNA synthetase by a CRISPR spacer sequence as a factor in the evolution of Pelobacter carbinolicus.}, journal = {BMC Evol Biol}, volume = {10}, year = {2010}, month = {2010}, pages = {230}, abstract = {BACKGROUND: Pelobacter carbinolicus, a bacterium of the family Geobacteraceae, cannot reduce Fe(III) directly or produce electricity like its relatives. How P. carbinolicus evolved is an intriguing problem. The genome of P. carbinolicus contains clustered regularly interspaced short palindromic repeats (CRISPR) separated by unique spacer sequences, which recent studies have shown to produce RNA molecules that interfere with genes containing identical sequences. RESULTS: CRISPR spacer $\#$1, which matches a sequence within hisS, the histidyl-tRNA synthetase gene of P. carbinolicus, was shown to be expressed. Phylogenetic analysis and genetics demonstrated that a gene paralogous to hisS in the genomes of Geobacteraceae is unlikely to compensate for interference with hisS. Spacer $\#$1 inhibited growth of a transgenic strain of Geobacter sulfurreducens in which the native hisS was replaced with that of P. carbinolicus. The prediction that interference with hisS would result in an attenuated histidyl-tRNA pool insufficient for translation of proteins with multiple closely spaced histidines, predisposing them to mutation and elimination during evolution, was investigated by comparative genomics of P. carbinolicus and related species. Several ancestral genes with high histidine demand have been lost or modified in the P. carbinolicus lineage, providing an explanation for its physiological differences from other Geobacteraceae. CONCLUSIONS: The disappearance of multiheme c-type cytochromes and other genes typical of a metal-respiring ancestor from the P. carbinolicus lineage may be the consequence of spacer $\#$1 interfering with hisS, a condition that can be reproduced in a heterologous host. This is the first successful co-introduction of an active CRISPR spacer and its target in the same cell, the first application of a chimeric CRISPR construct consisting of a spacer from one species in the context of repeats of another species, and the first report of a potential impact of CRISPR on genome-scale evolution by interference with an essential gene.}, keywords = {Base Sequence, Comparative Genomic Hybridization, Computational Biology, Deltaproteobacteria, DNA, Bacterial, DNA, Intergenic, Evolution, Molecular, Genes, Bacterial, Genome, Bacterial, Geobacillus, Histidine-tRNA Ligase, Inverted Repeat Sequences, Molecular Sequence Data, Phylogeny, Sequence Alignment, Sequence Analysis, DNA}, issn = {1471-2148}, doi = {10.1186/1471-2148-10-230}, author = {Aklujkar, Muktak and Lovley, Derek R} } @article {461, title = {The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens.}, journal = {BMC Microbiol}, volume = {9}, year = {2009}, month = {2009}, pages = {109}, abstract = {BACKGROUND: The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. RESULTS: The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second putative succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recently in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. CONCLUSION: The genomic evidence suggests that metabolism, physiology and regulation of gene expression in G. metallireducens may be dramatically different from other Geobacteraceae.}, keywords = {Bacterial Proteins, DNA, Bacterial, Gene Expression Regulation, Bacterial, Genome, Bacterial, Geobacter, Phylogeny, Sequence Analysis, DNA, Species Specificity, Transcription Factors}, issn = {1471-2180}, doi = {10.1186/1471-2180-9-109}, author = {Aklujkar, Muktak and Krushkal, Julia and DiBartolo, Genevieve and Lapidus, Alla and Land, Miriam L and Lovley, Derek R} }