@article {437, title = {Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens.}, journal = {Bioelectrochemistry}, volume = {80}, year = {2011}, month = {2011 Feb}, pages = {142-50}, abstract = {Geobacter sulfurreducens is one of the few microorganisms available in pure culture known to directly accept electrons from a negatively poised electrode. Microarray analysis was used to compare gene transcript abundance in biofilms of G. sulfurreducens using a graphite electrode as the sole electron donor for fumarate reduction compared with transcript abundance in biofilms growing on the same material, but not consuming current. Surprisingly, genes for putative cell-electrode connections, such as outer-surface cytochromes and pili, which are highly expressed in current-producing biofilms, were not highly expressed in current-consuming biofilms. Microarray analysis of G. sulfurreducens gene transcript abundance in current-consuming biofilms versus current-producing biofilms gave similar results. In both comparative studies current-consuming biofilms had greater transcript abundance for a gene (GSU3274) encoding a putative monoheme, c-type cytochrome. Deletion of genes for outer-surface proteins previously shown to be essential for optimal electron transfer to electrodes had no impact on electron transfer from electrodes. Deletion of GSU3274 completely inhibited electron transfer from electrodes, but had no impact on electron transfer to electrodes. These differences in gene expression patterns and the impact of gene deletions suggest that the mechanisms for electron transfer from electrodes to G. sulfurreducens differ significantly from the mechanisms for electron transfer to electrodes.}, keywords = {Bacterial Proteins, Biofilms, Cytochromes, Electrodes, Electron Transport, Electrons, Gene Expression, Geobacter, Graphite, Oligonucleotide Array Sequence Analysis, Oxidation-Reduction, Sequence Deletion}, issn = {1878-562X}, doi = {10.1016/j.bioelechem.2010.07.005}, author = {Strycharz, Sarah M and Glaven, Richard H and Coppi, Maddalena V and Gannon, Sarah M and Perpetua, Lorrie A and Liu, Anna and Nevin, Kelly P and Lovley, Derek R} } @article {432, title = {Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation.}, journal = {Microb Cell Fact}, volume = {9}, year = {2010}, month = {2010}, pages = {90}, abstract = {BACKGROUND: Geobacter sulfurreducens is capable of coupling the complete oxidation of organic compounds to iron reduction. The metabolic response of G. sulfurreducens towards variations in electron donors (acetate, hydrogen) and acceptors (Fe(III), fumarate) was investigated via (13)C-based metabolic flux analysis. We examined the (13)C-labeling patterns of proteinogenic amino acids obtained from G. sulfurreducens cultured with (13)C-acetate. RESULTS: Using (13)C-based metabolic flux analysis, we observed that donor and acceptor variations gave rise to differences in gluconeogenetic initiation, tricarboxylic acid cycle activity, and amino acid biosynthesis pathways. Culturing G. sulfurreducens cells with Fe(III) as the electron acceptor and acetate as the electron donor resulted in pyruvate as the primary carbon source for gluconeogenesis. When fumarate was provided as the electron acceptor and acetate as the electron donor, the flux analysis suggested that fumarate served as both an electron acceptor and, in conjunction with acetate, a carbon source. Growth on fumarate and acetate resulted in the initiation of gluconeogenesis by phosphoenolpyruvate carboxykinase and a slightly elevated flux through the oxidative tricarboxylic acid cycle as compared to growth with Fe(III) as the electron acceptor. In addition, the direction of net flux between acetyl-CoA and pyruvate was reversed during growth on fumarate relative to Fe(III), while growth in the presence of Fe(III) and acetate which provided hydrogen as an electron donor, resulted in decreased flux through the tricarboxylic acid cycle. CONCLUSIONS: We gained detailed insight into the metabolism of G. sulfurreducens cells under various electron donor/acceptor conditions using (13)C-based metabolic flux analysis. Our results can be used for the development of G. sulfurreducens as a chassis for a variety of applications including bioremediation and renewable biofuel production.}, keywords = {Acetic Acid, Acetyl Coenzyme A, Amino Acids, Carbon Isotopes, Citric Acid Cycle, Electrons, Ferric Compounds, Fumarates, Geobacter, Gluconeogenesis, Oxidation-Reduction, Phosphoenolpyruvate Carboxykinase (GTP), Pyruvates}, issn = {1475-2859}, doi = {10.1186/1475-2859-9-90}, author = {Yang, Tae Hoon and Coppi, Maddalena V and Lovley, Derek R and Sun, Jun} } @article {700, title = {Characterizing regulation of metabolism in Geobacter sulfurreducens through genome-wide expression data and sequence analysis.}, journal = {OMICS}, volume = {12}, year = {2008}, month = {2008 Mar}, pages = {33-59}, abstract = {Geobacteraceae are a family of metal reducing bacteria with important applications in bioremediation and electricity generation. G. sulfurreducens is a representative of Geobacteraceae that has been extensively studied with the goal of extending the understanding of this family of organisms for optimizing their practical applications. Here, we have analyzed gene expression data from 10 experiments involving environmental and genetic perturbations and have identified putative transcription factor binding sites (TFBS) involved in regulating key aspects of metabolism. Specifically, we considered data from both a subset of 10 microarray experiments (7 of 10) and all 10 experiments. The expression data from these two sets were independently clustered, and the upstream regions of genes and operons from the clusters in both sets were used to identify TFBS using the AlignACE program. This analysis resulted in the identification of motifs upstream of several genes involved in central metabolism, sulfate assimilation, and energy metabolism, as well as genes potentially encoding acetate permease. Further, similar TFBS were identified from the analysis of both sets, suggesting that these TFBS are significant in the regulation of metabolism in G. sulfurreducens. In addition, we have utilized microarray data to derive condition specific constraints on the capacity of key enzymes in central metabolism. We have incorporated these constraints into the metabolic model of G. sulfurreducens and simulated Fe(II)-limited growth. The resulting prediction was consistent with data, suggesting that regulatory constraints are important for simulating growth phenotypes in nonoptimal environments.}, keywords = {Gene Expression Regulation, Bacterial, Genome, Bacterial, Geobacter, Models, Genetic, Oligonucleotide Array Sequence Analysis, Sequence Analysis, DNA, Transcription, Genetic}, issn = {1536-2310}, doi = {10.1089/omi.2007.0043}, author = {Mahadevan, Radhakrishnan and Yan, Bin and Postier, Brad and Nevin, Kelly P and Woodard, Trevor L and O{\textquoteright}Neil, Regina and Coppi, Maddalena V and Meth{\'e}, Barbara A and Krushkal, Julia} } @article {491, title = {Elucidation of an alternate isoleucine biosynthesis pathway in Geobacter sulfurreducens.}, journal = {J Bacteriol}, volume = {190}, year = {2008}, month = {2008 Apr}, pages = {2266-74}, abstract = {The central metabolic model for Geobacter sulfurreducens included a single pathway for the biosynthesis of isoleucine that was analogous to that of Escherichia coli, in which the isoleucine precursor 2-oxobutanoate is generated from threonine. 13C labeling studies performed in G. sulfurreducens indicated that this pathway accounted for a minor fraction of isoleucine biosynthesis and that the majority of isoleucine was instead derived from acetyl-coenzyme A and pyruvate, possibly via the citramalate pathway. Genes encoding citramalate synthase (GSU1798), which catalyzes the first dedicated step in the citramalate pathway, and threonine ammonia-lyase (GSU0486), which catalyzes the conversion of threonine to 2-oxobutanoate, were identified and knocked out. Mutants lacking both of these enzymes were auxotrophs for isoleucine, whereas single mutants were capable of growth in the absence of isoleucine. Biochemical characterization of the single mutants revealed deficiencies in citramalate synthase and threonine ammonia-lyase activity. Thus, in G. sulfurreducens, 2-oxobutanoate can be synthesized either from citramalate or threonine, with the former being the main pathway for isoleucine biosynthesis. The citramalate synthase of G. sulfurreducens constitutes the first characterized member of a phylogenetically distinct clade of citramalate synthases, which contains representatives from a wide variety of microorganisms.}, keywords = {Acetyl Coenzyme A, Bacterial Proteins, Biosynthetic Pathways, Butyric Acids, Carbon Isotopes, Geobacter, Isoleucine, Malates, Pyruvic Acid, Threonine, Threonine Dehydratase}, issn = {1098-5530}, doi = {10.1128/JB.01841-07}, author = {Risso, Carla and Van Dien, Stephen J and Orloff, Amber and Lovley, Derek R and Coppi, Maddalena V} } @article {488, title = {Gene transcript analysis of assimilatory iron limitation in Geobacteraceae during groundwater bioremediation.}, journal = {Environ Microbiol}, volume = {10}, year = {2008}, month = {2008 May}, pages = {1218-30}, abstract = {Limitations on the availability of Fe(III) as an electron acceptor are thought to play an important role in restricting the growth and activity of Geobacter species during bioremediation of contaminated subsurface environments, but the possibility that these organisms might also be limited in the subsurface by the availability of iron for assimilatory purposes was not previously considered because copious quantities of Fe(II) are produced as the result of Fe(III) reduction. Analysis of multiple Geobacteraceae genomes revealed the presence of a three-gene cluster consisting of homologues of two iron-dependent regulators, fur and dtxR (ideR), separated by a homologue of feoB, which encodes an Fe(II) uptake protein. This cluster appears to be conserved among members of the Geobacteraceae and was detected in several environments. Expression of the fur-feoB-ideR cluster decreased as Fe(II) concentrations increased in chemostat cultures. The number of Geobacteraceae feoB transcripts in groundwater samples from a site undergoing in situ uranium bioremediation was relatively high until the concentration of dissolved Fe(II) increased near the end of the field experiment. These results suggest that, because much of the Fe(II) is sequestered in solid phases, Geobacter species, which have a high requirement for iron for iron-sulfur proteins, may be limited by the amount of iron available for assimilatory purposes. These results demonstrate the ability of transcript analysis to reveal previously unsuspected aspects of the in situ physiology of microorganisms in subsurface environments.}, keywords = {Bacterial Proteins, Biodegradation, Environmental, Culture Media, Ferric Compounds, Ferrous Compounds, Fresh Water, Gene Expression Regulation, Bacterial, Geobacter, Iron, Multigene Family, Phylogeny, Polymerase Chain Reaction, Repressor Proteins, Reverse Transcriptase Polymerase Chain Reaction, Transcription, Genetic, Uranium, Water Pollution, Radioactive}, issn = {1462-2920}, doi = {10.1111/j.1462-2920.2007.01537.x}, author = {O{\textquoteright}Neil, Regina A and Holmes, Dawn E and Coppi, Maddalena V and Adams, Lorrie A and Larrahondo, M Juliana and Ward, Joy E and Nevin, Kelly P and Woodard, Trevor L and Vrionis, Helen A and N{\textquoteright}guessan, Lucie A and Lovley, Derek R} } @article {505, title = {Importance of c-Type cytochromes for U(VI) reduction by Geobacter sulfurreducens.}, journal = {BMC Microbiol}, volume = {7}, year = {2007}, month = {2007}, pages = {16}, abstract = {BACKGROUND: In order to study the mechanism of U(VI) reduction, the effect of deleting c-type cytochrome genes on the capacity of Geobacter sulfurreducens to reduce U(VI) with acetate serving as the electron donor was investigated. RESULTS: The ability of several c-type cytochrome deficient mutants to reduce U(VI) was lower than that of the wild type strain. Elimination of two confirmed outer membrane cytochromes and two putative outer membrane cytochromes significantly decreased (ca. 50-60\%) the ability of G. sulfurreducens to reduce U(VI). Involvement in U(VI) reduction did not appear to be a general property of outer membrane cytochromes, as elimination of two other confirmed outer membrane cytochromes, OmcB and OmcC, had very little impact on U(VI) reduction. Among the periplasmic cytochromes, only MacA, proposed to transfer electrons from the inner membrane to the periplasm, appeared to play a significant role in U(VI) reduction. A subpopulation of both wild type and U(VI) reduction-impaired cells, 24-30\%, accumulated amorphous uranium in the periplasm. Comparison of uranium-accumulating cells demonstrated a similar amount of periplasmic uranium accumulation in U(VI) reduction-impaired and wild type G. sulfurreducens. Assessment of the ability of the various suspensions to reduce Fe(III) revealed no correlation between the impact of cytochrome deletion on U(VI) reduction and reduction of Fe(III) hydroxide and chelated Fe(III). CONCLUSION: This study indicates that c-type cytochromes are involved in U(VI) reduction by Geobacter sulfurreducens. The data provide new evidence for extracellular uranium reduction by G. sulfurreducens but do not rule out the possibility of periplasmic uranium reduction. Occurrence of U(VI) reduction at the cell surface is supported by the significant impact of elimination of outer membrane cytochromes on U(VI) reduction and the lack of correlation between periplasmic uranium accumulation and the capacity for uranium reduction. Periplasmic uranium accumulation may reflect the ability of uranium to penetrate the outer membrane rather than the occurrence of enzymatic U(VI) reduction. Elimination of cytochromes rarely had a similar impact on both Fe(III) and U(VI) reduction, suggesting that there are differences in the routes of electron transfer to U(VI) and Fe(III). Further studies are required to clarify the pathways leading to U(VI) reduction in G. sulfurreducens.}, keywords = {Biodegradation, Environmental, Cytochrome c Group, Ferric Compounds, Geobacter, Microscopy, Electron, Transmission, Mutation, Oxidation-Reduction, Periplasm, Uranium}, issn = {1471-2180}, doi = {10.1186/1471-2180-7-16}, author = {Shelobolina, Evgenya S and Coppi, Maddalena V and Korenevsky, Anton A and DiDonato, Laurie N and Sullivan, Sara A and Konishi, Hiromi and Xu, Huifang and Leang, Ching and Butler, Jessica E and Kim, Byoung-Chan and Lovley, Derek R} } @article {499, title = {Involvement of Geobacter sulfurreducens SfrAB in acetate metabolism rather than intracellular, respiration-linked Fe(III) citrate reduction.}, journal = {Microbiology}, volume = {153}, year = {2007}, month = {2007 Oct}, pages = {3572-85}, abstract = {A soluble ferric reductase, SfrAB, which catalysed the NADPH-dependent reduction of chelated Fe(III), was previously purified from the dissimilatory Fe(III)-reducing micro-organism Geobacter sulfurreducens, suggesting that reduction of chelated forms of Fe(III) might be cytoplasmic. However, metabolically active spheroplast suspensions could not catalyse acetate-dependent Fe(III) citrate reduction, indicating that periplasmic and/or outer-membrane components were required for Fe(III) citrate reduction. Furthermore, phenotypic analysis of an SfrAB knockout mutant suggested that SfrAB was involved in acetate metabolism rather than respiration-linked Fe(III) reduction. The mutant could not grow via the reduction of either Fe(III) citrate or fumarate when acetate was the electron donor but could grow with either acceptor if either hydrogen or formate served as the electron donor. Following prolonged incubation in acetate : fumarate medium in the absence of hydrogen and formate, an {\textquoteright}acetate-adapted{\textquoteright} SfrAB-null strain was isolated that was capable of growth on acetate : fumarate medium but not acetate : Fe(III) citrate medium. Comparison of gene expression in this strain with that of the wild-type revealed upregulation of a potential NADPH-dependent ferredoxin oxidoreductase as well as genes involved in energy generation and amino acid uptake, suggesting that NADPH homeostasis and the tricarboxylic acid (TCA) cycle were perturbed in the {\textquoteright}acetate-adapted{\textquoteright} SfrAB-null strain. Membrane and soluble fractions prepared from the {\textquoteright}acetate-adapted{\textquoteright} strain were depleted of NADPH-dependent Fe(III), viologen and quinone reductase activities. These results indicate that cytoplasmic, respiration-linked reduction of Fe(III) by SfrAB in vivo is unlikely and suggest that deleting SfrAB may interfere with growth via acetate oxidation by interfering with NADP regeneration.}, keywords = {Acetates, Amino Acid Transport Systems, Bacterial Proteins, Cell Membrane, Citric Acid Cycle, Cytoplasm, Energy Metabolism, Ferric Compounds, Formic Acids, Fumarates, Gene Deletion, Gene Expression Profiling, Geobacter, Hydrogen, NADH, NADPH Oxidoreductases, Oligonucleotide Array Sequence Analysis}, issn = {1350-0872}, doi = {10.1099/mic.0.2007/006478-0}, author = {Coppi, Maddalena V and O{\textquoteright}Neil, Regina A and Leang, Ching and Kaufmann, Franz and Meth{\'e}, Barbara A and Nevin, Kelly P and Woodard, Trevor L and Liu, Anna and Lovley, Derek R} } @article {521, title = {Two putative c-type multiheme cytochromes required for the expression of OmcB, an outer membrane protein essential for optimal Fe(III) reduction in Geobacter sulfurreducens.}, journal = {J Bacteriol}, volume = {188}, year = {2006}, month = {2006 Apr}, pages = {3138-42}, abstract = {Deletion of two homologous Geobacter sulfurreducens c-type cytochrome genes, omcG and omcH, decreased the rate of Fe(III) reduction and decreased the level of an outer membrane cytochrome critical for Fe(III) reduction, OmcB, without affecting its transcription. Expression of either gene restored Fe(III) reduction and OmcB expression, suggesting functional similarity.}, keywords = {Bacterial Outer Membrane Proteins, Bacterial Proteins, Blotting, Northern, Blotting, Western, Cytochromes c, Ferric Compounds, Gene Deletion, Gene Expression, Genes, Bacterial, Geobacter, Oxidation-Reduction, RNA, Bacterial, RNA, Messenger}, issn = {0021-9193}, doi = {10.1128/JB.188.8.3138-3142.2006}, author = {Kim, Byoung-Chan and Qian, Xinlei and Leang, Ching and Coppi, Maddalena V and Lovley, Derek R} } @article {536, title = {OmcF, a putative c-Type monoheme outer membrane cytochrome required for the expression of other outer membrane cytochromes in Geobacter sulfurreducens.}, journal = {J Bacteriol}, volume = {187}, year = {2005}, month = {2005 Jul}, pages = {4505-13}, abstract = {Outer membrane cytochromes are often proposed as likely agents for electron transfer to extracellular electron acceptors, such as Fe(III). The omcF gene in the dissimilatory Fe(III)-reducing microorganism Geobacter sulfurreducens is predicted to code for a small outer membrane monoheme c-type cytochrome. An OmcF-deficient strain was constructed, and its ability to reduce and grow on Fe(III) citrate was found to be impaired. Following a prolonged lag phase (150 h), the OmcF-deficient strain developed the ability to grow in Fe(III) citrate medium with doubling times and yields that were ca. 145\% and 70\% of those of the wild type, respectively. Comparison of the c-type cytochrome contents of outer membrane-enriched fractions prepared from wild-type and OmcF-deficient cultures confirmed the outer membrane association of OmcF and revealed multiple changes in the cytochrome content of the OmcF-deficient strain. These changes included loss of expression of two previously characterized outer membrane cytochromes, OmcB and OmcC, and overexpression of a third previously characterized outer membrane cytochrome, OmcS, during growth on Fe(III) citrate. The omcB and omcC transcripts could not be detected in the OmcF-deficient mutant by either reverse transcriptase PCR or Northern blot analyses. Expression of the omcF gene in trans restored both the capacity of the OmcF-deficient mutant to reduce Fe(III) and wild-type levels of omcB and omcC mRNA and protein. Thus, elimination of OmcF may impair Fe(III) reduction by influencing expression of OmcB, which has previously been demonstrated to play a critical role in Fe(III) reduction.}, keywords = {Amino Acid Sequence, Bacterial Outer Membrane Proteins, Cytochromes c, Ferric Compounds, Gene Deletion, Gene Expression Regulation, Bacterial, Geobacter, Molecular Sequence Data, Oxidation-Reduction, Sequence Alignment}, issn = {0021-9193}, doi = {10.1128/JB.187.13.4505-4513.2005}, author = {Kim, Byoung-Chan and Leang, Ching and Ding, Yan-Huai R and Glaven, Richard H and Coppi, Maddalena V and Lovley, Derek R} } @article {555, title = {Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe(III) and other electron acceptors by Geobacter sulfurreducens.}, journal = {J Bacteriol}, volume = {186}, year = {2004}, month = {2004 May}, pages = {3022-8}, abstract = {Geobacter sulfurreducens, a representative of the family Geobacteraceae that predominates in Fe(III)-reducing subsurface environments, can grow by coupling the oxidation of hydrogen to the reduction of a variety of electron acceptors, including Fe(III), fumarate, and quinones. An examination of the G. sulfurreducens genome revealed two operons, hya and hyb, which appeared to encode periplasmically oriented respiratory uptake hydrogenases. In order to assess the roles of these two enzymes in hydrogen-dependent growth, Hya- and Hyb-deficient mutants were generated by gene replacement. Hyb was found to be required for hydrogen-dependent reduction of Fe(III), anthraquinone-2,6-disulfonate, and fumarate by resting cell suspensions and to be essential for growth with hydrogen and these three electron acceptors. Hya, in contrast, was not. These findings suggest that Hyb is an essential respiratory hydrogenase in G. sulfurreducens.}, keywords = {Anthraquinones, Ferric Compounds, Fumarates, Geobacter, Hydrogen, Operon, Oxidation-Reduction, Oxidoreductases, Phenotype}, issn = {0021-9193}, author = {Coppi, Maddalena V and O{\textquoteright}Neil, Regina A and Lovley, Derek R} } @article {551, title = {MacA, a diheme c-type cytochrome involved in Fe(III) reduction by Geobacter sulfurreducens.}, journal = {J Bacteriol}, volume = {186}, year = {2004}, month = {2004 Jun}, pages = {4042-5}, abstract = {A 36-kDa diheme c-type cytochrome abundant in Fe(III)-respiring Geobacter sulfurreducens, designated MacA, was more highly expressed during growth with Fe(III) as the electron acceptor than with fumarate. Although MacA has homology to proteins with in vitro peroxidase activity, deletion of macA had no impact on response to oxidative stress. However, the capacity for Fe(III) reduction was greatly diminished, indicating that MacA, which is predicted to be localized in the periplasm, is a key intermediate in electron transfer to Fe(III).}, keywords = {Amino Acid Sequence, Bacterial Proteins, Cytochrome c Group, Deltaproteobacteria, Electron Transport, Ferric Compounds, Gene Deletion, Molecular Sequence Data, Oxidation-Reduction}, issn = {0021-9193}, doi = {10.1128/JB.186.12.4042-4045.2004}, author = {Butler, Jessica E and Kaufmann, Franz and Coppi, Maddalena V and N{\'u}{\~n}ez, Cinthia and Lovley, Derek R} } @article {576, title = {Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens.}, journal = {Biochem J}, volume = {369}, year = {2003}, month = {2003 Jan 1}, pages = {153-61}, abstract = {A 9.6 kDa periplasmic c -type cytochrome, designated PpcA, was purified from the Fe(III)-reducing bacterium Geobacter sulfurreducens and characterized. The purified protein is basic (pI 9.5), contains three haems and has an N-terminal amino acid sequence closely related to those of the previously described trihaem c (7) cytochromes of Geobacter metallireducens and Desulfuromonas acetoxidans. The gene encoding PpcA was identified from the G. sulfurreducens genome using the N-terminal sequence, and encodes a protein of 71 amino acids (molecular mass 9.58 kDa) with 49\% identity to the c (7) cytochrome of D. acetoxidans. In order to determine the physiological role of PpcA, a knockout mutant was prepared with a single-step recombination method. Acetate-dependent Fe(III) reduction was significantly inhibited in both growing cultures and cell suspensions of the mutant. When ppcA was expressed in trans, the full capacity for Fe(III) reduction with acetate was restored. The transfer of electrons from acetate to anthraquinone 2,6-disulphonate (AQDS; a humic acid analogue) and to U(VI) was also compromised in the mutant, but acetate-dependent reduction of fumarate was not altered. The rates of reduction of Fe(III), AQDS, U(VI) and fumarate were also the same in the wild type and ppcA mutant when hydrogen was supplied as the electron donor. When taken together with previous studies on other electron transport proteins in G. sulfurreducens, these results suggest that PpcA serves as an intermediary electron carrier from acetate to terminal Fe(III) reductases in the outer membrane, and is also involved in the transfer of electrons from acetate to U(VI) and humics.}, keywords = {Amino Acid Sequence, Base Sequence, Cytochrome c Group, DNA, Bacterial, Molecular Sequence Data, Periplasm, Proteobacteria, Sequence Homology, Amino Acid}, issn = {0264-6021}, doi = {10.1042/BJ20020597}, author = {Lloyd, Jon R and Leang, Ching and Hodges Myerson, Allison L and Coppi, Maddalena V and Cuifo, Stacey and Methe, Barb and Sandler, Steven J and Lovley, Derek R} }