@article {433, title = {Analysis of biostimulated microbial communities from two field experiments reveals temporal and spatial differences in proteome profiles.}, journal = {Environ Sci Technol}, volume = {44}, year = {2010}, month = {2010 Dec 1}, pages = {8897-903}, abstract = {Stimulated by an acetate-amendment field experiment conducted in 2007, anaerobic microbial populations in the aquifer at the Rifle Integrated Field Research Challenge site in Colorado reduced mobile U(VI) to insoluble U(IV). During this experiment, planktonic biomass was sampled at various time points to quantitatively evaluate proteomes. In 2008, an acetate-amended field experiment was again conducted in a similar manner to the 2007 experiment. As there was no comprehensive metagenome sequence available for use in proteomics analysis, we systematically evaluated 12 different organism genome sequences to generate sets of aggregate genomes, or "pseudo-metagenomes", for supplying relative quantitative peptide and protein identifications. Proteomics results support previous observations of the dominance of Geobacteraceae during biostimulation using acetate as sole electron donor, and revealed a shift from an early stage of iron reduction to a late stage of iron reduction. Additionally, a shift from iron reduction to sulfate reduction was indicated by changes in the contribution of proteome information contributed by different organism genome sequences within the aggregate set. In addition, the comparison of proteome measurements made between the 2007 field experiment and 2008 field experiment revealed differences in proteome profiles. These differences may be the result of alterations in abundance and population structure within the planktonic biomass samples collected for analysis.}, keywords = {Bacteria, Biodiversity, Biomass, Fresh Water, Plankton, Proteome, Water Microbiology}, issn = {1520-5851}, doi = {10.1021/es101029f}, author = {Callister, Stephen J and Wilkins, Michael J and Nicora, Carrie D and Williams, Kenneth H and Banfield, Jillian F and VerBerkmoes, Nathan C and Hettich, Robert L and N{\textquoteright}Guessan, Lucie and Mouser, Paula J and Elifantz, Hila and Smith, Richard D and Lovley, Derek R and Lipton, Mary S and Long, Philip E} } @article {457, title = {Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation.}, journal = {Appl Environ Microbiol}, volume = {75}, year = {2009}, month = {2009 Oct}, pages = {6591-9}, abstract = {Implementation of uranium bioremediation requires methods for monitoring the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here, we report a proteomics-based approach for simultaneously documenting the strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO, aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching liquid chromatography-tandem mass spectrometry spectra to peptides predicted from seven isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and Geobacter bemidjiensis-like strains and later possible emergence of M21 and G. bemidjiensis-like strains more closely related to Geobacter lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-coenzyme A and pyruvate for central metabolism, while abundant peptides matching tricarboxylic acid cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics-independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.}, keywords = {Amino Acid Sequence, Bacterial Proteins, Biodegradation, Environmental, Genomics, Geobacter, Molecular Sequence Data, Oxidation-Reduction, Peptide Mapping, Plankton, Proteomics, Uranium, Water Microbiology, Water Pollutants, Radioactive}, issn = {1098-5336}, doi = {10.1128/AEM.01064-09}, author = {Wilkins, Michael J and VerBerkmoes, Nathan C and Williams, Kenneth H and Callister, Stephen J and Mouser, Paula J and Elifantz, Hila and N{\textquoteright}guessan, Lucie A and Thomas, Brian C and Nicora, Carrie D and Shah, Manesh B and Abraham, Paul and Lipton, Mary S and Lovley, Derek R and Hettich, Robert L and Long, Philip E and Banfield, Jillian F} }