@article {433, title = {Analysis of biostimulated microbial communities from two field experiments reveals temporal and spatial differences in proteome profiles.}, journal = {Environ Sci Technol}, volume = {44}, year = {2010}, month = {2010 Dec 1}, pages = {8897-903}, abstract = {Stimulated by an acetate-amendment field experiment conducted in 2007, anaerobic microbial populations in the aquifer at the Rifle Integrated Field Research Challenge site in Colorado reduced mobile U(VI) to insoluble U(IV). During this experiment, planktonic biomass was sampled at various time points to quantitatively evaluate proteomes. In 2008, an acetate-amended field experiment was again conducted in a similar manner to the 2007 experiment. As there was no comprehensive metagenome sequence available for use in proteomics analysis, we systematically evaluated 12 different organism genome sequences to generate sets of aggregate genomes, or "pseudo-metagenomes", for supplying relative quantitative peptide and protein identifications. Proteomics results support previous observations of the dominance of Geobacteraceae during biostimulation using acetate as sole electron donor, and revealed a shift from an early stage of iron reduction to a late stage of iron reduction. Additionally, a shift from iron reduction to sulfate reduction was indicated by changes in the contribution of proteome information contributed by different organism genome sequences within the aggregate set. In addition, the comparison of proteome measurements made between the 2007 field experiment and 2008 field experiment revealed differences in proteome profiles. These differences may be the result of alterations in abundance and population structure within the planktonic biomass samples collected for analysis.}, keywords = {Bacteria, Biodiversity, Biomass, Fresh Water, Plankton, Proteome, Water Microbiology}, issn = {1520-5851}, doi = {10.1021/es101029f}, author = {Callister, Stephen J and Wilkins, Michael J and Nicora, Carrie D and Williams, Kenneth H and Banfield, Jillian F and VerBerkmoes, Nathan C and Hettich, Robert L and N{\textquoteright}Guessan, Lucie and Mouser, Paula J and Elifantz, Hila and Smith, Richard D and Lovley, Derek R and Lipton, Mary S and Long, Philip E} } @article {477, title = {Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor.}, journal = {Biochim Biophys Acta}, volume = {1784}, year = {2008}, month = {2008 Dec}, pages = {1935-41}, abstract = {The mechanisms for Fe(III) oxide reduction in Geobacter species are of interest because Fe(III) oxides are the most abundant form of Fe(III) in many soils and sediments and Geobacter species are prevalent Fe(III)-reducing microorganisms in many of these environments. Protein abundance in G. sulfurreducens grown on poorly crystalline Fe(III) oxide or on soluble Fe(III) citrate was compared with a global accurate mass and time tag proteomic approach in order to identify proteins that might be specifically associated with Fe(III) oxide reduction. A total of 2991 proteins were detected in G. sulfurreducens grown with acetate as the electron donor and either Fe(III) oxide or soluble Fe(III) citrate as the electron acceptor, resulting in 86\% recovery of the genes predicted to encode proteins. Of the total expressed proteins 76\% were less abundant in Fe(III) oxide cultures than in Fe(III) citrate cultures, which is consistent with the overall slower rate of metabolism during growth with an insoluble electron acceptor. A total of 269 proteins were more abundant in Fe(III) oxide-grown cells than in cells grown on Fe(III) citrate. Most of these proteins were in the energy metabolism category: primarily electron transport proteins, including 13 c-type cytochromes and PilA, the structural protein for electrically conductive pili. Several of the cytochromes that were more abundant in Fe(III) oxide-grown cells were previously shown with genetic approaches to be essential for optimal Fe(III) oxide reduction. Other proteins that were more abundant during growth on Fe(III) oxide included transport and binding proteins, proteins involved in regulation and signal transduction, cell envelope proteins, and enzymes for amino acid and protein biosynthesis, among others. There were also a substantial number of proteins of unknown function that were more abundant during growth on Fe(III) oxide. These results indicate that electron transport to Fe(III) oxide requires additional and/or different proteins than electron transfer to soluble, chelated Fe(III) and suggest proteins whose functions should be further investigated in order to better understand the mechanisms of electron transfer to Fe(III) oxide in G. sulfurreducens.}, keywords = {Bacterial Proteins, Ferric Compounds, Gene Expression Regulation, Bacterial, Geobacter, Oxidation-Reduction, Proteome}, issn = {0006-3002}, doi = {10.1016/j.bbapap.2008.06.011}, author = {Ding, Yan-Huai R and Hixson, Kim K and Aklujkar, Muktak A and Lipton, Mary S and Smith, Richard D and Lovley, Derek R and Mester, T{\"u}nde} } @article {518, title = {The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions.}, journal = {Biochim Biophys Acta}, volume = {1764}, year = {2006}, month = {2006 Jul}, pages = {1198-206}, abstract = {The proteome of Geobacter sulfurreducens, a model for the Geobacter species that predominate in many Fe(III)-reducing subsurface environments, was characterized with ultra high-pressure liquid chromatography and mass spectrometry using accurate mass and time (AMT) tags as well as with more traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Cells were grown under six different growth conditions in order to enhance the potential that a wide range of genes would be expressed. The AMT tag approach was able to identify a much greater number of proteins than could be detected with the 2-D PAGE approach. With the AMT approach over 3,000 gene products were identified, representing about 90\% of the total predicted gene products in the genome. A high proportion of predicted proteins in most protein role categories were detected; the highest number of proteins was identified in the hypothetical protein role category. Furthermore, 91 c-type cytochromes of 111 predicted genes in the G. sulfurreducens genome were identified. Differences in the abundance of cytochromes and other proteins under different growth conditions provided information for future functional analysis of these proteins. These results demonstrate that a high percentage of the predicted proteins in the G. sulfurreducens genome are produced and that the AMT tag approach provides a rapid method for comparing differential expression of proteins under different growth conditions in this organism.}, keywords = {Bacterial Proteins, Bacteriological Techniques, Chromatography, High Pressure Liquid, Cytochrome c Group, Electrophoresis, Gel, Two-Dimensional, Ferric Compounds, Fumarates, Geobacter, Peptide Fragments, Proteome, Spectrometry, Mass, Electrospray Ionization}, issn = {0006-3002}, doi = {10.1016/j.bbapap.2006.04.017}, author = {Ding, Yan-Huai R and Hixson, Kim K and Giometti, Carol S and Stanley, Ann and Esteve-N{\'u}{\~n}ez, Abraham and Khare, Tripti and Tollaksen, Sandra L and Zhu, Wenhong and Adkins, Joshua N and Lipton, Mary S and Smith, Richard D and Mester, T{\"u}nde and Lovley, Derek R} }