@article {3138, title = {Field evidence of selenium bioreduction in a uranium-contaminated aquifer.}, journal = {Environ Microbiol Rep}, volume = {5}, year = {2013}, month = {2013 Jun}, pages = {444-52}, abstract = {

Removal of selenium from groundwater was documented during injection of acetate into a uranium-contaminated aquifer near Rifle, Colorado (USA). Bioreduction of aqueous selenium to its elemental form (Se0) concentrated it within mineralized biofilms affixed to tubing used to circulate acetate-amended groundwater. Scanning and transmission electron microscopy revealed close association between Se0 precipitates and cell surfaces, with Se0 aggregates having a diameter of 50-60 nm. Accumulation of Se0 within biofilms occurred over a three-week interval at a rate of c. 9 mg Se0 m(-2) tubing day(-1). Removal was inferred to result from the activity of a mixed microbial community within the biofilms capable of coupling acetate oxidation to the reduction of oxygen, nitrate and selenate. Phylogenetic analysis of the biofilm revealed a community dominated by strains of Dechloromonas sp. and Thauera sp., with isolates exhibiting genetic similarity to the latter known to reduce selenate to Se0. Enrichment cultures of selenate-respiring microorganisms were readily established using Rifle site groundwater and acetate, with cultures dominated by strains closely related to D. aromatica (96-99\% similarity). Predominance of Dechloromonas sp. in recovered biofilms and enrichments suggests this microorganism may play a role in the removal of selenium oxyanions present in Se-impacted groundwaters and sediments.

}, keywords = {Acetates, Betaproteobacteria, Biodegradation, Environmental, Biofilms, Colorado, Groundwater, Humans, Microbial Consortia, Oxidation-Reduction, Oxygen, Phylogeny, RNA, Ribosomal, 16S, Selenic Acid, Selenium, Selenium Compounds, Thauera, Uranium, Water Pollutants, Chemical}, issn = {1758-2229}, doi = {10.1111/1758-2229.12032}, author = {Williams, Kenneth H and Wilkins, Michael J and N{\textquoteright}Guessan, A Lucie and Arey, Bruce and Dodova, Elena and Dohnalkova, Alice and Holmes, Dawn and Lovley, Derek R and Long, Philip E} } @article {434, title = {The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments.}, journal = {BMC Genomics}, volume = {11}, year = {2010}, month = {2010}, pages = {490}, abstract = {BACKGROUND: Geobacter species in a phylogenetic cluster known as subsurface clade 1 are often the predominant microorganisms in subsurface environments in which Fe(III) reduction is the primary electron-accepting process. Geobacter bemidjiensis, a member of this clade, was isolated from hydrocarbon-contaminated subsurface sediments in Bemidji, Minnesota, and is closely related to Geobacter species found to be abundant at other subsurface sites. This study examines whether there are significant differences in the metabolism and physiology of G. bemidjiensis compared to non-subsurface Geobacter species. RESULTS: Annotation of the genome sequence of G. bemidjiensis indicates several differences in metabolism compared to previously sequenced non-subsurface Geobacteraceae, which will be useful for in silico metabolic modeling of subsurface bioremediation processes involving Geobacter species. Pathways can now be predicted for the use of various carbon sources such as propionate by G. bemidjiensis. Additional metabolic capabilities such as carbon dioxide fixation and growth on glucose were predicted from the genome annotation. The presence of different dicarboxylic acid transporters and two oxaloacetate decarboxylases in G. bemidjiensis may explain its ability to grow by disproportionation of fumarate. Although benzoate is the only aromatic compound that G. bemidjiensis is known or predicted to utilize as an electron donor and carbon source, the genome suggests that this species may be able to detoxify other aromatic pollutants without degrading them. Furthermore, G. bemidjiensis is auxotrophic for 4-aminobenzoate, which makes it the first Geobacter species identified as having a vitamin requirement. Several features of the genome indicated that G. bemidjiensis has enhanced abilities to respire, detoxify and avoid oxygen. CONCLUSION: Overall, the genome sequence of G. bemidjiensis offers surprising insights into the metabolism and physiology of Geobacteraceae in subsurface environments, compared to non-subsurface Geobacter species, such as the ability to disproportionate fumarate, more efficient oxidation of propionate, enhanced responses to oxygen stress, and dependence on the environment for a vitamin requirement. Therefore, an understanding of the activity of Geobacter species in the subsurface is more likely to benefit from studies of subsurface isolates such as G. bemidjiensis than from the non-subsurface model species studied so far.}, keywords = {Aldehyde Oxidoreductases, Biodegradation, Environmental, Carbohydrate Metabolism, Carbon Dioxide, Cell Wall, Electrons, Environmental Microbiology, Fatty Acids, Frameshift Mutation, Fumarates, Genes, Bacterial, Genome, Bacterial, Geobacter, Glucose, Iron, Metabolic Networks and Pathways, Multienzyme Complexes, Multigene Family, Osmosis, Oxidation-Reduction, Oxo-Acid-Lyases, Propionic Acids, Pyruvic Acid, Species Specificity, Surface Properties}, issn = {1471-2164}, doi = {10.1186/1471-2164-11-490}, author = {Aklujkar, Muktak and Young, Nelson D and Holmes, Dawn and Chavan, Milind and Risso, Carla and Kiss, Hajnalka E and Han, Cliff S and Land, Miriam L and Lovley, Derek R} }