@article {456, title = {Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens.}, journal = {BMC Genomics}, volume = {10}, year = {2009}, month = {2009}, pages = {447}, abstract = {BACKGROUND: Rhodoferax ferrireducens is a metabolically versatile, Fe(III)-reducing, subsurface microorganism that is likely to play an important role in the carbon and metal cycles in the subsurface. It also has the unique ability to convert sugars to electricity, oxidizing the sugars to carbon dioxide with quantitative electron transfer to graphite electrodes in microbial fuel cells. In order to expand our limited knowledge about R. ferrireducens, the complete genome sequence of this organism was further annotated and then the physiology of R. ferrireducens was investigated with a constraint-based, genome-scale in silico metabolic model and laboratory studies. RESULTS: The iterative modeling and experimental approach unveiled exciting, previously unknown physiological features, including an expanded range of substrates that support growth, such as cellobiose and citrate, and provided additional insights into important features such as the stoichiometry of the electron transport chain and the ability to grow via fumarate dismutation. Further analysis explained why R. ferrireducens is unable to grow via photosynthesis or fermentation of sugars like other members of this genus and uncovered novel genes for benzoate metabolism. The genome also revealed that R. ferrireducens is well-adapted for growth in the subsurface because it appears to be capable of dealing with a number of environmental insults, including heavy metals, aromatic compounds, nutrient limitation and oxidative stress. CONCLUSION: This study demonstrates that combining genome-scale modeling with the annotation of a new genome sequence can guide experimental studies and accelerate the understanding of the physiology of under-studied yet environmentally relevant microorganisms.}, keywords = {Comamonadaceae, Comparative Genomic Hybridization, DNA, Bacterial, Ferric Compounds, Genome, Bacterial, Genomics, Models, Biological, Oxidation-Reduction, Sequence Analysis, DNA}, issn = {1471-2164}, doi = {10.1186/1471-2164-10-447}, author = {Risso, Carla and Sun, Jun and Zhuang, Kai and Mahadevan, Radhakrishnan and DeBoy, Robert and Ismail, Wael and Shrivastava, Susmita and Huot, Heather and Kothari, Sagar and Daugherty, Sean and Bui, Olivia and Schilling, Christophe H and Lovley, Derek R and Meth{\'e}, Barbara A} } @article {466, title = {Genome-scale constraint-based modeling of Geobacter metallireducens.}, journal = {BMC Syst Biol}, volume = {3}, year = {2009}, month = {2009}, pages = {15}, abstract = {BACKGROUND: Geobacter metallireducens was the first organism that can be grown in pure culture to completely oxidize organic compounds with Fe(III) oxide serving as electron acceptor. Geobacter species, including G. sulfurreducens and G. metallireducens, are used for bioremediation and electricity generation from waste organic matter and renewable biomass. The constraint-based modeling approach enables the development of genome-scale in silico models that can predict the behavior of complex biological systems and their responses to the environments. Such a modeling approach was applied to provide physiological and ecological insights on the metabolism of G. metallireducens. RESULTS: The genome-scale metabolic model of G. metallireducens was constructed to include 747 genes and 697 reactions. Compared to the G. sulfurreducens model, the G. metallireducens metabolic model contains 118 unique reactions that reflect many of G. metallireducens{\textquoteright} specific metabolic capabilities. Detailed examination of the G. metallireducens model suggests that its central metabolism contains several energy-inefficient reactions that are not present in the G. sulfurreducens model. Experimental biomass yield of G. metallireducens growing on pyruvate was lower than the predicted optimal biomass yield. Microarray data of G. metallireducens growing with benzoate and acetate indicated that genes encoding these energy-inefficient reactions were up-regulated by benzoate. These results suggested that the energy-inefficient reactions were likely turned off during G. metallireducens growth with acetate for optimal biomass yield, but were up-regulated during growth with complex electron donors such as benzoate for rapid energy generation. Furthermore, several computational modeling approaches were applied to accelerate G. metallireducens research. For example, growth of G. metallireducens with different electron donors and electron acceptors were studied using the genome-scale metabolic model, which provided a fast and cost-effective way to understand the metabolism of G. metallireducens. CONCLUSION: We have developed a genome-scale metabolic model for G. metallireducens that features both metabolic similarities and differences to the published model for its close relative, G. sulfurreducens. Together these metabolic models provide an important resource for improving strategies on bioremediation and bioenergy generation.}, keywords = {Biodegradation, Environmental, Biomass, Computer Simulation, Ecosystem, Electron Transport, Energy Metabolism, Genome, Bacterial, Geobacter, Iron, Metabolic Networks and Pathways, Models, Biological, Models, Genetic, Mutation, Phenotype, Species Specificity, Systems Biology}, issn = {1752-0509}, doi = {10.1186/1752-0509-3-15}, author = {Sun, Jun and Sayyar, Bahareh and Butler, Jessica E and Pharkya, Priti and Fahland, Tom R and Famili, Iman and Schilling, Christophe H and Lovley, Derek R and Mahadevan, Radhakrishnan} }