@article {460, title = {Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells.}, journal = {Biosens Bioelectron}, volume = {24}, year = {2009}, month = {2009 Aug 15}, pages = {3498-503}, abstract = {Geobacter sulfurreducens produces current densities in microbial fuel cells that are among the highest known for pure cultures. The possibility of adapting this organism to produce even higher current densities was evaluated. A system in which a graphite anode was poised at -400 mV (versus Ag/AgCl) was inoculated with the wild-type strain of G. sulfurreducens, strain DL-1. An isolate, designated strain KN400, was recovered from the biofilm after 5 months of growth on the electrode. KN400 was much more effective in current production than strain DL-1. This was apparent with anodes poised at -400 mV, as well as in systems run in true fuel cell mode. KN400 had current (7.6A/m(2)) and power (3.9 W/m(2)) densities that respectively were substantially higher than those of DL1 (1.4A/m(2) and 0.5 W/m(2)). On a per cell basis KN400 was more effective in current production than DL1, requiring thinner biofilms to make equivalent current. The enhanced capacity for current production in KN400 was associated with a greater abundance of electrically conductive microbial nanowires than DL1 and lower internal resistance (0.015 versus 0.130 Omega/m(2)) and mass transfer limitation in KN400 fuel cells. KN400 produced flagella, whereas DL1 does not. Surprisingly, KN400 had much less outer-surface c-type cytochromes than DL1. KN400 also had a greater propensity to form biofilms on glass or graphite than DL1, even when growing with the soluble electron acceptor, fumarate. These results demonstrate that it is possible to enhance the ability of microorganisms to electrochemically interact with electrodes with the appropriate selective pressure and that improved current production is associated with clear differences in the properties of the outer surface of the cell that may provide insights into the mechanisms for microbe-electrode interactions.}, keywords = {Bioelectric Energy Sources, Electrochemistry, Equipment Design, Equipment Failure Analysis, Geobacter, Species Specificity}, issn = {1873-4235}, doi = {10.1016/j.bios.2009.05.004}, author = {Yi, Hana and Nevin, Kelly P and Kim, Byoung-Chan and Franks, Ashely E and Klimes, Anna and Tender, Leonard M and Lovley, Derek R} } @article {523, title = {Harvesting energy from the marine sediment-water interface II. Kinetic activity of anode materials.}, journal = {Biosens Bioelectron}, volume = {21}, year = {2006}, month = {2006 May 15}, pages = {2058-63}, abstract = {Here, we report a comparative study on the kinetic activity of various anodes of a recently described microbial fuel cell consisting of an anode imbedded in marine sediment and a cathode in overlying seawater. Using plain graphite anodes, it was demonstrated that a significant portion of the anodic current results from oxidation of sediment organic matter catalyzed by microorganisms colonizing the anode and capable of directly reducing the anode without added exogenous electron-transfer mediators. Here, graphite anodes incorporating microbial oxidants are evaluated in the laboratory relative to plain graphite with the goal of increasing power density by increasing current density. Anodes evaluated include graphite modified by adsorption of anthraquinone-1,6-disulfonic acid (AQDS) or 1,4-naphthoquinone (NQ), a graphite-ceramic composite containing Mn2+ and Ni2+, and graphite modified with a graphite paste containing Fe3O4 or Fe3O4 and Ni2+. It was found that these anodes possess between 1.5- and 2.2-fold greater kinetic activity than plain graphite. Fuel cells were deployed in a coastal site near Tuckerton, NJ (USA) that utilized two of these anodes. These fuel cells generated ca. 5-fold greater current density than a previously characterized fuel cell equipped with a plain graphite anode, and operated at the same site.}, keywords = {Electrochemistry, Electrodes, Energy-Generating Resources, Ferumoxytol, Geologic Sediments, Kinetics, Oceans and Seas, Seawater}, issn = {0956-5663}, doi = {10.1016/j.bios.2006.01.033}, author = {Lowy, Daniel A and Tender, Leonard M and Zeikus, J Gregory and Park, Doo Hyun and Lovley, Derek R} } @article {588, title = {Electrode-reducing microorganisms that harvest energy from marine sediments.}, journal = {Science}, volume = {295}, year = {2002}, month = {2002 Jan 18}, pages = {483-5}, abstract = {Energy in the form of electricity can be harvested from marine sediments by placing a graphite electrode (the anode) in the anoxic zone and connecting it to a graphite cathode in the overlying aerobic water. We report a specific enrichment of microorganisms of the family Geobacteraceae on energy-harvesting anodes, and we show that these microorganisms can conserve energy to support their growth by oxidizing organic compounds with an electrode serving as the sole electron acceptor. This finding not only provides a method for extracting energy from organic matter, but also suggests a strategy for promoting the bioremediation of organic contaminants in subsurface environments.}, keywords = {Aerobiosis, Anaerobiosis, Anthraquinones, Benzoates, Biodegradation, Environmental, Carbon Dioxide, Colony Count, Microbial, Deltaproteobacteria, DNA, Ribosomal, Electricity, Electrodes, Electrons, Energy Metabolism, Geologic Sediments, Oxidation-Reduction, RNA, Ribosomal, 16S, Seawater, Sodium Acetate}, issn = {1095-9203}, doi = {10.1126/science.1066771}, author = {Bond, Daniel R and Holmes, Dawn E and Tender, Leonard M and Lovley, Derek R} } @article {580, title = {Harnessing microbially generated power on the seafloor.}, journal = {Nat Biotechnol}, volume = {20}, year = {2002}, month = {2002 Aug}, pages = {821-5}, abstract = {In many marine environments, a voltage gradient exists across the water sediment interface resulting from sedimentary microbial activity. Here we show that a fuel cell consisting of an anode embedded in marine sediment and a cathode in overlying seawater can use this voltage gradient to generate electrical power in situ. Fuel cells of this design generated sustained power in a boat basin carved into a salt marsh near Tuckerton, New Jersey, and in the Yaquina Bay Estuary near Newport, Oregon. Retrieval and analysis of the Tuckerton fuel cell indicates that power generation results from at least two anode reactions: oxidation of sediment sulfide (a by-product of microbial oxidation of sedimentary organic carbon) and oxidation of sedimentary organic carbon catalyzed by microorganisms colonizing the anode. These results demonstrate in real marine environments a new form of power generation that uses an immense, renewable energy reservoir (sedimentary organic carbon) and has near-immediate application.}, keywords = {Bacteria, Bioelectric Energy Sources, Biotechnology, Carbon, Conservation of Energy Resources, DNA, Ribosomal, Electricity, Electrodes, Environmental Microbiology, Geologic Sediments, Molecular Sequence Data, New Jersey, Oceans and Seas, Oregon, Oxidation-Reduction, RNA, Bacterial, RNA, Ribosomal, 16S, Sulfides}, issn = {1087-0156}, doi = {10.1038/nbt716}, author = {Tender, Leonard M and Reimers, Clare E and Stecher, Hilmar A and Holmes, Dawn E and Bond, Daniel R and Lowy, Daniel A and Pilobello, Kanoelani and Fertig, Stephanie J and Lovley, Derek R} }