@article {471, title = {Transcriptome of Geobacter uraniireducens growing in uranium-contaminated subsurface sediments.}, journal = {ISME J}, volume = {3}, year = {2009}, month = {2009 Feb}, pages = {216-30}, abstract = {To learn more about the physiological state of Geobacter species living in subsurface sediments, heat-sterilized sediments from a uranium-contaminated aquifer in Rifle, Colorado, were inoculated with Geobacter uraniireducens, a pure culture representative of the Geobacter species that predominates during in situ uranium bioremediation at this site. Whole-genome microarray analysis comparing sediment-grown G. uraniireducens with cells grown in defined culture medium indicated that there were 1084 genes that had higher transcript levels during growth in sediments. Thirty-four c-type cytochrome genes were upregulated in the sediment-grown cells, including several genes that are homologous to cytochromes that are required for optimal Fe(III) and U(VI) reduction by G. sulfurreducens. Sediment-grown cells also had higher levels of transcripts, indicative of such physiological states as nitrogen limitation, phosphate limitation and heavy metal stress. Quantitative reverse transcription PCR showed that many of the metabolic indicator genes that appeared to be upregulated in sediment-grown G. uraniireducens also showed an increase in expression in the natural community of Geobacter species present during an in situ uranium bioremediation field experiment at the Rifle site. These results demonstrate that it is feasible to monitor gene expression of a microorganism growing in sediments on a genome scale and that analysis of the physiological status of a pure culture growing in subsurface sediments can provide insights into the factors controlling the physiology of natural subsurface communities.}, keywords = {Colorado, DNA, Bacterial, Environmental Microbiology, Gene Expression Profiling, Geobacter, Geologic Sediments, Molecular Sequence Data, Oligonucleotide Array Sequence Analysis, Sequence Analysis, DNA, Uranium}, issn = {1751-7370}, doi = {10.1038/ismej.2008.89}, author = {Holmes, Dawn E and O{\textquoteright}Neil, Regina A and Chavan, Milind A and N{\textquoteright}guessan, Lucie A and Vrionis, Helen A and Perpetua, Lorrie A and Larrahondo, M Juliana and DiDonato, Raymond and Liu, Anna and Lovley, Derek R} } @article {488, title = {Gene transcript analysis of assimilatory iron limitation in Geobacteraceae during groundwater bioremediation.}, journal = {Environ Microbiol}, volume = {10}, year = {2008}, month = {2008 May}, pages = {1218-30}, abstract = {Limitations on the availability of Fe(III) as an electron acceptor are thought to play an important role in restricting the growth and activity of Geobacter species during bioremediation of contaminated subsurface environments, but the possibility that these organisms might also be limited in the subsurface by the availability of iron for assimilatory purposes was not previously considered because copious quantities of Fe(II) are produced as the result of Fe(III) reduction. Analysis of multiple Geobacteraceae genomes revealed the presence of a three-gene cluster consisting of homologues of two iron-dependent regulators, fur and dtxR (ideR), separated by a homologue of feoB, which encodes an Fe(II) uptake protein. This cluster appears to be conserved among members of the Geobacteraceae and was detected in several environments. Expression of the fur-feoB-ideR cluster decreased as Fe(II) concentrations increased in chemostat cultures. The number of Geobacteraceae feoB transcripts in groundwater samples from a site undergoing in situ uranium bioremediation was relatively high until the concentration of dissolved Fe(II) increased near the end of the field experiment. These results suggest that, because much of the Fe(II) is sequestered in solid phases, Geobacter species, which have a high requirement for iron for iron-sulfur proteins, may be limited by the amount of iron available for assimilatory purposes. These results demonstrate the ability of transcript analysis to reveal previously unsuspected aspects of the in situ physiology of microorganisms in subsurface environments.}, keywords = {Bacterial Proteins, Biodegradation, Environmental, Culture Media, Ferric Compounds, Ferrous Compounds, Fresh Water, Gene Expression Regulation, Bacterial, Geobacter, Iron, Multigene Family, Phylogeny, Polymerase Chain Reaction, Repressor Proteins, Reverse Transcriptase Polymerase Chain Reaction, Transcription, Genetic, Uranium, Water Pollution, Radioactive}, issn = {1462-2920}, doi = {10.1111/j.1462-2920.2007.01537.x}, author = {O{\textquoteright}Neil, Regina A and Holmes, Dawn E and Coppi, Maddalena V and Adams, Lorrie A and Larrahondo, M Juliana and Ward, Joy E and Nevin, Kelly P and Woodard, Trevor L and Vrionis, Helen A and N{\textquoteright}guessan, Lucie A and Lovley, Derek R} } @article {483, title = {Genes for two multicopper proteins required for Fe(III) oxide reduction in Geobacter sulfurreducens have different expression patterns both in the subsurface and on energy-harvesting electrodes.}, journal = {Microbiology}, volume = {154}, year = {2008}, month = {2008 May}, pages = {1422-35}, abstract = {Previous studies have shown that Geobacter sulfurreducens requires the outer-membrane, multicopper protein OmpB for Fe(III) oxide reduction. A homologue of OmpB, designated OmpC, which is 36 \% similar to OmpB, has been discovered in the G. sulfurreducens genome. Deletion of ompC inhibited reduction of insoluble, but not soluble Fe(III). Analysis of multiple Geobacter and Pelobacter genomes, as well as in situ Geobacter, indicated that genes encoding multicopper proteins are conserved in Geobacter species but are not found in Pelobacter species. Levels of ompB transcripts were similar in G. sulfurreducens at different growth rates in chemostats and during growth on a microbial fuel cell anode. In contrast, ompC transcript levels increased at higher growth rates in chemostats and with increasing current production in fuel cells. Constant levels of Geobacter ompB transcripts were detected in groundwater during a field experiment in which acetate was added to the subsurface to promote in situ uranium bioremediation. In contrast, ompC transcript levels increased during the rapid phase of growth of Geobacter species following addition of acetate to the groundwater and then rapidly declined. These results demonstrate that more than one multicopper protein is required for optimal Fe(III) oxide reduction in G. sulfurreducens and suggest that, in environmental studies, quantifying OmpB/OmpC-related genes could help alleviate the problem that Pelobacter genes may be inadvertently quantified via quantitative analysis of 16S rRNA genes. Furthermore, comparison of differential expression of ompB and ompC may provide insight into the in situ metabolic state of Geobacter species in environments of interest.}, keywords = {Acetates, Amino Acid Sequence, Bacterial Outer Membrane Proteins, Electrodes, Ferric Compounds, Gene Deletion, Gene Expression Profiling, Geobacter, Molecular Sequence Data, Oxidation-Reduction, Phylogeny, Sequence Alignment, Sequence Homology, Nucleic Acid, Soil Microbiology, Uranium}, issn = {1350-0872}, doi = {10.1099/mic.0.2007/014365-0}, author = {Holmes, Dawn E and Mester, T{\"u}nde and O{\textquoteright}Neil, Regina A and Perpetua, Lorrie A and Larrahondo, M Juliana and Glaven, Richard and Sharma, Manju L and Ward, Joy E and Nevin, Kelly P and Lovley, Derek R} }