@article {633, title = {Isolation of Geobacter species from diverse sedimentary environments.}, journal = {Appl Environ Microbiol}, volume = {62}, year = {1996}, month = {1996 May}, pages = {1531-6}, abstract = {In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram-negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor for Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process.}, keywords = {Base Sequence, Ferric Compounds, Gram-Negative Anaerobic Bacteria, Molecular Sequence Data, Phylogeny, RNA, Bacterial, RNA, Ribosomal, 16S, Water Microbiology}, issn = {0099-2240}, author = {Coates, J D and Phillips, E J and Lonergan, D J and Jenter, H and Lovley, D R} } @article {632, title = {Microbial degradation of hydrochlorofluorocarbons (CHCl2F and CHCl2CF3) in soils and sediments.}, journal = {Appl Environ Microbiol}, volume = {62}, year = {1996}, month = {1996 May}, pages = {1818-21}, abstract = {The ability of microorganisms to degrade trace levels of the hydrochlorofluorocarbons HCFC-21 and HCFC-123 was investigated. Methanotroph-linked oxidation of HCFC-21 was observed in aerobic soils, and anaerobic degradation of HCFC-21 occurred in freshwater and salt marsh sediments. Microbial degradation of HCFC-123 was observed in anoxic freshwater and salt marsh sediments, and the recovery of 1,1,1-trifluoro-2-chloroethane indicated the involvement of reductive dechlorination. No degradation of HCFC-123 was observed in aerobic soils. In some experiments, HCFCs were degraded at low (parts per billion) concentrations, raising the possibility that bacteria in nature remove HCFCs from the atmosphere.}, keywords = {Biodegradation, Environmental, Chlorofluorocarbons, Soil Microbiology}, issn = {0099-2240}, author = {Oremland, R S and Lonergan, D J and Culbertson, C W and Lovley, D R} } @article {634, title = {Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria.}, journal = {J Bacteriol}, volume = {178}, year = {1996}, month = {1996 Apr}, pages = {2402-8}, abstract = {Evolutionary relationships among strictly anaerobic dissimilatory Fe(III)-reducing bacteria obtained from a diversity of sedimentary environments were examined by phylogenetic analysis of 16S rRNA gene sequences. Members of the genera Geobacter, Desulfuromonas, Pelobacter, and Desulfuromusa formed a monophyletic group within the delta subdivision of the class Proteobacteria. On the basis of their common ancestry and the shared ability to reduce Fe(III) and/or S0, we propose that this group be considered a single family, Geobacteraceae. Bootstrap analysis, characteristic nucleotides, and higher-order secondary structures support the division of Geobacteraceae into two subgroups, designated the Geobacter and Desulfuromonas clusters. The genus Desulfuromusa and Pelobacter acidigallici make up a distinct branch within the Desulfuromonas cluster. Several members of the family Geobacteraceae, none of which reduce sulfate, were found to contain the target sequences of probes that have been previously used to define the distribution of sulfate-reducing bacteria and sulfate-reducing bacterium-like microorganisms. The recent isolations of Fe(III)-reducing microorganisms distributed throughout the domain Bacteria suggest that development of 16S rRNA probes that would specifically target all Fe(III) reducers may not be feasible. However, all of the evidence suggests that if a 16S rRNA sequence falls within the family Geobacteraceae, then the organism has the capacity for Fe(III) reduction. The suggestion, based on geological evidence, that Fe(III) reduction was the first globally significant process for oxidizing organic matter back to carbon dioxide is consistent with the finding that acetate-oxidizing Fe(III) reducers are phylogenetically diverse.}, keywords = {Bacteria, Anaerobic, Base Sequence, DNA, Ribosomal, Ferric Compounds, Iron, Molecular Sequence Data, Oxidation-Reduction, Phylogeny, RNA, Ribosomal, 16S, Sequence Analysis, DNA, Sequence Homology, Nucleic Acid}, issn = {0021-9193}, author = {Lonergan, D J and Jenter, H L and Coates, J D and Phillips, E J and Schmidt, T M and Lovley, D R} } @article {637, title = {Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids.}, journal = {Arch Microbiol}, volume = {164}, year = {1995}, month = {1995 Dec}, pages = {406-13}, abstract = {Studies on the microorganisms living in hydrocarbon-contaminated sediments in San Diego Bay, California led to the isolation of a novel Fe(III)-reducing microorganism. This organism, designated strain SDBY1, was an obligately anaerobic, non-motile, non-flagellated, gram-negative rod. Strain SDBY1 conserves energy to support growth from the oxidation of acetate, lactate, succinate, fumarate, laurate, palmitate, or stearate. H2 was also oxidized with the reduction of Fe(III), but growth with H2 as the sole electron donor was not observed. In addition to various forms of soluble and insoluble Fe(III), strain SDBY1 also coupled growth to the reduction of fumarate, Mn(IV), or S0. Air-oxidized minus dithionite-reduced difference spectra exhibited peaks at 552.8, 523.6, and 422.8 nm, indicative of c-type cytochrome(s). Strain SDBY1 shares physiological characteristics with organisms in the genera Geobacter, Pelobacter, and Desulfuromonas. Detailed analysis of the 16S rRNA sequence indicated that strain SDBY1 should be placed in the genus Desulfuromonas. The new species name Desulfuromonas palmitatis is proposed. D. palmitatis is only the second marine organism found (after D. acetoxidans) to oxidize multicarbon organic compounds completely to carbon dioxide with Fe(III) as an electron acceptor and provides the first pure culture model for the oxidation of long-chain fatty acids coupled to Fe(III) reduction.}, keywords = {Electron Transport, Fatty Acids, Gram-Negative Anaerobic Bacteria, Iron, Microscopy, Electron, Scanning, Oxidation-Reduction, Phylogeny, RNA, Bacterial, RNA, Ribosomal, 16S, Water Microbiology}, issn = {0302-8933}, author = {Coates, J D and Lonergan, D J and Philips, E J and Jenter, H and Lovley, D R} } @article {639, title = {Fe(III) and S0 reduction by Pelobacter carbinolicus.}, journal = {Appl Environ Microbiol}, volume = {61}, year = {1995}, month = {1995 Jun}, pages = {2132-8}, abstract = {There is a close phylogenetic relationship between Pelobacter species and members of the genera Desulfuromonas and Geobacter, and yet there has been a perplexing lack of physiological similarities. Pelobacter species have been considered to have a fermentative metabolism. In contrast, Desulfuromonas and Geobacter species have a respiratory metabolism with Fe(III) serving as the common terminal electron acceptor in all species. However, the ability of Pelobacter species to reduce Fe(III) had not been previously evaluated. When a culture of Pelobacter carbinolicus that had grown by fermentation of 2,3-butanediol was inoculated into the same medium supplemented with Fe(III), the Fe(III) was reduced. There was less accumulation of ethanol and more production of acetate in the presence of Fe(III). P. carbinolicus grew with ethanol as the sole electron donor and Fe(III) as the sole electron acceptor. Ethanol was metabolized to acetate. Growth was also possible on Fe(III) with the oxidation of propanol to propionate or butanol to butyrate if acetate was provided as a carbon source. P. carbinolicus appears capable of conserving energy to support growth from Fe(III) respiration as it also grew with H2 or formate as the electron donor and Fe(III) as the electron acceptor. Once adapted to Fe(III) reduction, P. carbinolicus could also grow on ethanol or H2 with S0 as the electron acceptor. P. carbinolicus did not contain detectable concentrations of the c-type cytochromes that previous studies have suggested are involved in electron transport to Fe(III) in other organisms that conserve energy to support growth from Fe(III) reduction.(ABSTRACT TRUNCATED AT 250 WORDS)}, keywords = {Bacteria, Anaerobic, Base Sequence, Butylene Glycols, Culture Media, Ethanol, Ferrous Compounds, Hydrogen, Molecular Sequence Data, Oxidation-Reduction, Phylogeny, RNA, Ribosomal, 16S, Sulfur}, issn = {0099-2240}, author = {Lovley, D R and Phillips, E J and Lonergan, D J and Widman, P K} } @article {642, title = {Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism.}, journal = {Appl Environ Microbiol}, volume = {60}, year = {1994}, month = {1994 Oct}, pages = {3752-9}, abstract = {A dissimilatory metal- and sulfur-reducing microorganism was isolated from surface sediments of a hydrocarbon-contaminated ditch in Norman, Okla. The isolate, which was designated strain PCA, was an obligately anaerobic, nonfermentative nonmotile, gram-negative rod. PCA grew in a defined medium with acetate as an electron donor and ferric PPi, ferric oxyhydroxide, ferric citrate, elemental sulfur, Co(III)-EDTA, fumarate, or malate as the sole electron acceptor. PCA also coupled the oxidation of hydrogen to the reduction of Fe(III) but did not reduce Fe(III) with sulfur, glucose, lactate, fumarate, propionate, butyrate, isobutyrate, isovalerate, succinate, yeast extract, phenol, benzoate, ethanol, propanol, or butanol as an electron donor. PCA did not reduce oxygen, Mn(IV), U(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PCA exhibited dithionite-reduced minus air-oxidized difference spectra which were characteristic of c-type cytochromes. Phylogenetic analysis of the 16S rRNA sequence placed PCA in the delta subgroup of the proteobacteria. Its closest known relative is Geobacter metallireducens. The ability to utilize either hydrogen or acetate as the sole electron donor for Fe(III) reduction makes strain PCA a unique addition to the relatively small group of respiratory metal-reducing microorganisms available in pure culture. A new species name, Geobacter sulfurreducens, is proposed.}, keywords = {Acetic Acid, Acetic Acids, Base Sequence, DNA Primers, DNA, Bacterial, DNA, Ribosomal, Electron Transport, Gram-Negative Anaerobic Bacteria, Hydrogen, Metals, Microscopy, Electron, Molecular Sequence Data, Oxidation-Reduction, Phylogeny, RNA, Bacterial, RNA, Ribosomal, 16S, Soil Microbiology}, issn = {0099-2240}, author = {Caccavo, F and Lonergan, D J and Lovley, D R and Davis, M and Stolz, J F and McInerney, M J} } @article {659, title = {Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15.}, journal = {Appl Environ Microbiol}, volume = {56}, year = {1990}, month = {1990 Jun}, pages = {1858-64}, abstract = {The dissimilatory Fe(III) reducer, GS-15, is the first microorganism known to couple the oxidation of aromatic compounds to the reduction of Fe(III) and the first example of a pure culture of any kind known to anaerobically oxidize an aromatic hydrocarbon, toluene. In this study, the metabolism of toluene, phenol, and p-cresol by GS-15 was investigated in more detail. GS-15 grew in an anaerobic medium with toluene as the sole electron donor and Fe(III) oxide as the electron acceptor. Growth coincided with Fe(III) reduction. [ring-C]toluene was oxidized to CO(2), and the stoichiometry of CO(2) production and Fe(III) reduction indicated that GS-15 completely oxidized toluene to carbon dioxide with Fe(III) as the electron acceptor. Magnetite was the primary iron end product during toluene oxidation. Phenol and p-cresol were also completely oxidized to carbon dioxide with Fe(III) as the sole electron acceptor, and GS-15 could obtain energy to support growth by oxidizing either of these compounds as the sole electron donor. p-Hydroxybenzoate was a transitory extracellular intermediate of phenol and p-cresol metabolism but not of toluene metabolism. GS-15 oxidized potential aromatic intermediates in the oxidation of toluene (benzylalcohol and benzaldehyde) and p-cresol (p-hydroxybenzylalcohol and p-hydroxybenzaldehyde). The metabolism described here provides a model for how aromatic hydrocarbons and phenols may be oxidized with the reduction of Fe(III) in contaminated aquifers and petroleum-containing sediments.}, issn = {0099-2240}, author = {Lovley, D R and Lonergan, D J} } @article {661, title = {Hydrogen and Formate Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese by Alteromonas putrefaciens.}, journal = {Appl Environ Microbiol}, volume = {55}, year = {1989}, month = {1989 Mar}, pages = {700-6}, abstract = {The ability of Alteromonas putrefaciens to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory Fe(III) or Mn(IV) reduction was investigated. A. putrefaciens grew with hydrogen, formate, lactate, or pyruvate as the sole electron donor and Fe(III) as the sole electron acceptor. Lactate and pyruvate were oxidized to acetate, which was not metabolized further. With Fe(III) as the electron acceptor, A. putrefaciens had a high affinity for hydrogen and formate and metabolized hydrogen at partial pressures that were 25-fold lower than those of hydrogen that can be metabolized by pure cultures of sulfate reducers or methanogens. The electron donors for Fe(III) reduction also supported Mn(IV) reduction. The electron donors for Fe(III) and Mn(IV) reduction and the inability of A. putrefaciens to completely oxidize multicarbon substrates to carbon dioxide distinguish A. putrefaciens from GS-15, the only other organism that is known to obtain energy for growth by coupling the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). The ability of A. putrefaciens to reduce large quantities of Fe(III) and to grow in a defined medium distinguishes it from a Pseudomonas sp., which is the only other known hydrogen-oxidizing, Fe(III)-reducing microorganism. Furthermore, A. putrefaciens is the first organism that is known to grow with hydrogen as the electron donor and Mn(IV) as the electron acceptor and is the first organism that is known to couple the oxidation of formate to the reduction of Fe(III) or Mn(IV). Thus, A. putrefaciens provides a much needed microbial model for key reactions in the oxidation of sediment organic matter coupled to Fe(III) and Mn(IV) reduction.}, issn = {0099-2240}, author = {Lovley, D R and Phillips, E J and Lonergan, D J} }