@article {567, title = {Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III).}, journal = {Int J Syst Evol Microbiol}, volume = {53}, year = {2003}, month = {2003 May}, pages = {669-73}, abstract = {To further investigate the diversity of micro-organisms capable of conserving energy to support growth from dissimilatory Fe(III) reduction, Fe(III)-reducing micro-organisms were enriched and isolated from subsurface sediments collected in Oyster Bay, VA, USA. A novel isolate, designated T118(T), was recovered in a medium with lactate as the sole electron donor and Fe(III) as the sole electron acceptor. Cells of T1 18(T) were Gram-negative, motile, short rods with a single polar flagellum. Strain T1 18(T) grew between pH 6.7 and 7.1, with a temperature range of 4-30 degrees C. The optimal growth temperature was 25 degrees C. Electron donors utilized by strain T1 18(T) with Fe(III) as the sole electron acceptor included acetate, lactate, malate, propionate, pyruvate, succinate and benzoate. None of the compounds tested was fermented. Electron acceptors utilized with either acetate or lactate as the electron donor included Fe(III)-NTA (nitrilotriacetic acid), Mn(IV) oxide, nitrate, fumarate and oxygen. Phylogenetic analysis demonstrated that strain T1 18(T) is most closely related to the genus Rhodoferax. Unlike other species in this genus, strain T1 18(T) is not a phototroph and does not ferment fructose. However, phototrophic genes may be present but not expressed under the experimental conditions tested. No Rhodoferax species have been reported to grow via dissimilatory Fe(III) reduction. Based on these physiological and phylogenetic differences, strain T1 18(T) (=ATCC BAA-621(T) = DSM 15236(T)) is proposed as a novel species, Rhodoferax ferrireducens sp. nov.}, keywords = {Acetates, Anaerobiosis, Bacterial Typing Techniques, Betaproteobacteria, Cold Temperature, Culture Media, DNA, Ribosomal, Electron Transport, Ferric Compounds, Fresh Water, Molecular Sequence Data, Oxidation-Reduction, Phylogeny, RNA, Ribosomal, 16S, Sequence Analysis, DNA}, issn = {1466-5026}, author = {Finneran, Kevin T and Johnsen, Claudia V and Lovley, Derek R} } @article {574, title = {Desulfitobacterium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds.}, journal = {Int J Syst Evol Microbiol}, volume = {52}, year = {2002}, month = {2002 Nov}, pages = {1929-35}, abstract = {Strain 853-15A(T) was enriched and isolated from uranium-contaminated aquifer sediment by its ability to grow under anaerobic conditions via the oxidation of lactate coupled to the reduction of anthraquinone-2,6-disulfonate (AQDS) to anthrahydroquinone-2,6-disulfonate (AHQDS). Lactate was oxidized incompletely to acetate and carbon dioxide according to the reaction CH3CHOHCOO(-)+ 2AQDS+H2O --> CH3COO(-)+ 2AHQDS+CO2. Additional electron donors utilized included formate, ethanol, butanol, butyrate, malate and pyruvate. Lactate also supported growth with Fe(III) citrate, Mn(IV) oxide, humic substances, elemental sulfur, 3-chloro-4-hydroxyphenylacetate, trichloroethylene or tetrachloroethylene serving as the electron acceptor. Growth was not observed with sulfate, sulfite, nitrate or fumarate as the terminal electron acceptor. The temperature optimum for growth was 30 degrees C, but growth was also observed at 20 and 37 degrees C. The pH optimum was approximately 7.0. The 16S rDNA sequence of strain 853-15A(T) suggested that it was most closely related to Desulfitobacterium dehalogenans and closely related to Desulfitobacterium chlororespirans and Desulfitobacterium frappieri. The phylogenetic and physiological properties exhibited by strain 853-15A(T) (= ATCC BAA-636(T)) place it within the genus Desulfitobacterium as the type strain of a novel species, Desulfitobacterium metallireducens sp. nov.}, keywords = {Anaerobiosis, DNA, Bacterial, DNA, Ribosomal, Ecosystem, Electron Transport, Geologic Sediments, Humic Substances, Metals, Microscopy, Electron, Molecular Sequence Data, Oxidation-Reduction, Peptococcaceae, Phenotype, Phylogeny, RNA, Bacterial, RNA, Ribosomal, 16S, Species Specificity}, issn = {1466-5026}, author = {Finneran, Kevin T and Forbush, Heather M and VanPraagh, Catherine V Gaw and Lovley, Derek R} }