@article {368, title = {Anaerobic decomposition of switchgrass by tropical soil-derived feedstock-adapted consortia.}, journal = {MBio}, volume = {3}, year = {2012}, month = {2012}, abstract = {Tropical forest soils decompose litter rapidly with frequent episodes of anoxic conditions, making it likely that bacteria using alternate terminal electron acceptors (TEAs) play a large role in decomposition. This makes these soils useful templates for improving biofuel production. To investigate how TEAs affect decomposition, we cultivated feedstock-adapted consortia (FACs) derived from two tropical forest soils collected from the ends of a rainfall gradient: organic matter-rich tropical cloud forest (CF) soils, which experience sustained low redox, and iron-rich tropical rain forest (RF) soils, which experience rapidly fluctuating redox. Communities were anaerobically passed through three transfers of 10 weeks each with switchgrass as a sole carbon (C) source; FACs were then amended with nitrate, sulfate, or iron oxide. C mineralization and cellulase activities were higher in CF-FACs than in RF-FACs. Pyrosequencing of the small-subunit rRNA revealed members of the Firmicutes, Bacteroidetes, and Alphaproteobacteria as dominant. RF- and CF-FAC communities were not different in microbial diversity or biomass. The RF-FACs, derived from fluctuating redox soils, were the most responsive to the addition of TEAs, while the CF-FACs were overall more efficient and productive, both on a per-gram switchgrass and a per-cell biomass basis. These results suggest that decomposing microbial communities in fluctuating redox environments are adapted to the presence of a diversity of TEAs and ready to take advantage of them. More importantly, these data highlight the role of local environmental conditions in shaping microbial community function that may be separate from phylogenetic structure. IMPORTANCE: After multiple transfers, we established microbial consortia derived from two tropical forest soils with different native redox conditions. Communities derived from the rapidly fluctuating redox environment maintained a capacity to use added terminal electron acceptors (TEAs) after multiple transfers, though they were not present during the enrichment. Communities derived from lower-redox soils were not responsive to TEA addition but were much more efficient at switchgrass decomposition. Though the communities were different, diversity was not, and both were dominated by many of the same species of clostridia. This reflects the inadequacy of rRNA for determining the function of microbial communities, in this case the retained ability to utilize TEAs that were not part of the selective growth conditions. More importantly, this suggests that microbial community function is shaped by life history, where environmental factors produce heritable traits through natural selection over time, creating variation in the community, a phenomenon not well documented for microbes.}, keywords = {Adaptation, Physiological, Alphaproteobacteria, Anaerobiosis, Bacteroidetes, Biota, Biotransformation, Carbon, Electron Transport, Enzyme Activation, Ferric Compounds, Genes, rRNA, Microbial Consortia, Nitrates, Oxidation-Reduction, Panicum, Phylogeny, Rain, Soil Microbiology, Sulfates, Trees, Tropical Climate}, issn = {2150-7511}, doi = {10.1128/mBio.00249-11}, author = {Deangelis, Kristen M and Fortney, Julian L and Borglin, Sharon and Silver, Whendee L and Simmons, Blake A and Hazen, Terry C} } @article {736, title = {Hydrogenotrophic denitrification and perchlorate reduction in ion exchange brines using membrane biofilm reactors.}, journal = {Biotechnol Bioeng}, volume = {104}, year = {2009}, month = {2009 Oct 15}, pages = {483-91}, abstract = {Halophilic (salt loving), hydrogenotrophic (H(2) oxidizing) denitrifying bacteria were investigated for treatment of nitrate (NO3-) and perchlorate (ClO4-) contaminated groundwater and ion exchange (IX) brines. Hydrogenotrophic denitrifying bacteria were enriched from a denitrifying wastewater seed under both halophilc and non-halophilc conditions. The cultures were inoculated into bench-scale membrane biofilm reactors (MBfRs) with an "outside in" configuration, with contaminated water supplied to the lumen of the membranes and H(2) supplied to the shell. Abiotic mass transfer tests showed that H(2) mass transfer coefficients were lower in brines than in tap water at highest Reynolds number, possibly due to increased transport of salts and decreased H(2) solubility at the membrane/liquid interface. An average NO3- removal efficiency of 93\% was observed for the MBfR operated in continuous flow mode with synthetic contaminated groundwater. Removal efficiencies of 30\% for NO3- and 42\% for ClO4- were observed for the MBfR operated with synthetic IX brine in batch operating mode with a reaction time of 53 h. Phylogenetic analysis focused on the active microbial community and revealed that halotolerant, NO3- -reducing bacteria of the bacterial classes Gamma-Proteobacteria and Sphingobacteria were the metabolically dominant members within the stabilized biofilm. This study shows that, despite decreased H(2) transfer under high salt conditions, hydrogenotrophic biological reduction may be successfully used for the treatment of NO3- and ClO- in a MBfR.}, keywords = {Bacteroidetes, Biofilms, Cluster Analysis, DNA, Bacterial, DNA, Ribosomal, Gammaproteobacteria, Hydrogen, Ion Exchange, Membranes, Molecular Sequence Data, Nitrites, Oxidation-Reduction, Perchloric Acid, Phylogeny, RNA, Ribosomal, 16S, Sequence Analysis, DNA, Water Pollutants, Chemical, Water Purification}, issn = {1097-0290}, doi = {10.1002/bit.22414}, author = {Sahu, Ashish K and Conneely, Teresa and N{\"u}sslein, Klaus and Ergas, Sarina J} } @article {504, title = {Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell.}, journal = {Int J Syst Evol Microbiol}, volume = {57}, year = {2007}, month = {2007 Apr}, pages = {701-7}, abstract = {A Gram-negative, non-motile, filamentous, rod-shaped, non-spore-forming bacterium (strain F2(T)) was isolated from the surface of an electricity-harvesting electrode incubated in marine sediments. Strain F2(T) does not contain c-type cytochromes, flexirubin or carotenoids. It is a facultative anaerobe that can ferment sugars by using a mixed acid fermentation pathway and it can grow over a wide range of temperatures (4-42 degrees C). The DNA G+C (44.9 mol\%) content and chemotaxonomic characteristics (major fatty acids, a-15 : 0 and 15 : 0) were consistent with those of species within the phylum Bacteroidetes. Phylogenetic analysis of the 16S rRNA nucleotide and elongation factor G amino acid sequences indicated that strain F2(T) represents a unique phylogenetic cluster within the phylum Bacteroidetes. On the basis of 16S rRNA gene sequence phylogeny, the closest relative available in pure culture, Alkaliflexus imshenetskii, is only 87.5 \% similar to strain F2(T). Results from physiological, biochemical and phylogenetic analyses showed that strain F2(T) should be classified as a novel genus and species within the phylum Bacteroidetes, for which the name Prolixibacter bellariivorans gen. nov., sp. nov. is proposed. The type strain is F2(T) (=ATCC BAA-1284(T)=JCM 13498(T)).}, keywords = {Bacteroidetes, Carbohydrate Metabolism, Cold Temperature, DNA, Bacterial, DNA, Ribosomal, Energy-Generating Resources, Geologic Sediments, Molecular Sequence Data, Phylogeny, RNA, Ribosomal, 16S, Seawater}, issn = {1466-5026}, doi = {10.1099/ijs.0.64296-0}, author = {Holmes, Dawn E and Nevin, Kelly P and Woodard, Trevor L and Peacock, Aaron D and Lovley, Derek R} }