@article {419, title = {Genome-scale analysis of anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus placidus.}, journal = {ISME J}, volume = {6}, year = {2012}, month = {2012 Jan}, pages = {146-57}, abstract = {Insight into the mechanisms for the anaerobic metabolism of aromatic compounds by the hyperthermophilic archaeon Ferroglobus placidus is expected to improve understanding of the degradation of aromatics in hot (>80{\textdegree} C) environments and to identify enzymes that might have biotechnological applications. Analysis of the F. placidus genome revealed genes predicted to encode enzymes homologous to those previously identified as having a role in benzoate and phenol metabolism in mesophilic bacteria. Surprisingly, F. placidus lacks genes for an ATP-independent class II benzoyl-CoA (coenzyme A) reductase (BCR) found in all strictly anaerobic bacteria, but has instead genes coding for a bzd-type ATP-consuming class I BCR, similar to those found in facultative bacteria. The lower portion of the benzoate degradation pathway appears to be more similar to that found in the phototroph Rhodopseudomonas palustris, than the pathway reported for all heterotrophic anaerobic benzoate degraders. Many of the genes predicted to be involved in benzoate metabolism were found in one of two gene clusters. Genes for phenol carboxylation proceeding through a phenylphosphate intermediate were identified in a single gene cluster. Analysis of transcript abundance with a whole-genome microarray and quantitative reverse transcriptase polymerase chain reaction demonstrated that most of the genes predicted to be involved in benzoate or phenol metabolism had higher transcript abundance during growth on those substrates vs growth on acetate. These results suggest that the general strategies for benzoate and phenol metabolism are highly conserved between microorganisms living in moderate and hot environments, and that anaerobic metabolism of aromatic compounds might be analyzed in a wide range of environments with similar molecular targets.}, keywords = {Acetates, Archaea, Bacteria, Anaerobic, Benzoates, Metabolic Networks and Pathways, Phenol, Rhodopseudomonas}, issn = {1751-7370}, doi = {10.1038/ismej.2011.88}, author = {Holmes, Dawn E and Risso, Carla and Smith, Jessica A and Lovley, Derek R} } @article {566, title = {Metabolism of organic compounds in anaerobic, hydrothermal sulphate-reducing marine sediments.}, journal = {Environ Microbiol}, volume = {5}, year = {2003}, month = {2003 Jul}, pages = {583-91}, abstract = {Previous studies of hot (>80 degrees C) microbial ecosystems have primarily relied on the study of pure cultures or analysis of 16S rDNA sequences. In order to gain more information on anaerobic metabolism by natural communities in hot environments, sediments were collected from a shallow marine hydrothermal vent system in Baia di Levante, Vulcano, Italy and incubated under strict anaerobic conditions at 90 degrees C. Sulphate reduction was the predominant terminal electron-accepting process in the sediments. The addition of molybdate inhibited sulphate reduction in the sediments and resulted in a linear accumulation of acetate and hydrogen over time. [U-14C]- acetate was completely oxidized to 14CO2, and the addition of molybdate inhibited 14CO2 production by 60\%. [U-14C]-glucose was oxidized to 14CO2, and this was inhibited when molybdate was added. When the pool sizes of short-chain fatty acids were artificially increased, radiolabel from [U-14C]-glucose accumulated in the acetate pool. L-[U-14C]-glutamate, [ring-14C]-benzoate and [U-14C]-palmitate were also anaerobically oxidized to 14CO2 in the sediments, but molybdate had little effect on the oxidation of these compounds. These results demonstrate that natural microbial communities living in a hot, microbial ecosystem can oxidize acetate and a range of other organic electron donors under sulphate-reducing conditions and suggest that acetate is an important extracellular intermediate in the anaerobic degradation of organic matter in hot microbial ecosystems.}, keywords = {Acetates, Anaerobiosis, Bacteria, Anaerobic, Benzoates, Carbon Dioxide, Ecosystem, Geologic Sediments, Glucose, Glutamic Acid, Hot Temperature, Hydrogen, Italy, Molybdenum, Organic Chemicals, Oxidation-Reduction, Palmitates, Seawater, Sulfates, Water Microbiology}, issn = {1462-2912}, author = {Tor, Jason M and Amend, Jan P and Lovley, Derek R} } @article {588, title = {Electrode-reducing microorganisms that harvest energy from marine sediments.}, journal = {Science}, volume = {295}, year = {2002}, month = {2002 Jan 18}, pages = {483-5}, abstract = {Energy in the form of electricity can be harvested from marine sediments by placing a graphite electrode (the anode) in the anoxic zone and connecting it to a graphite cathode in the overlying aerobic water. We report a specific enrichment of microorganisms of the family Geobacteraceae on energy-harvesting anodes, and we show that these microorganisms can conserve energy to support their growth by oxidizing organic compounds with an electrode serving as the sole electron acceptor. This finding not only provides a method for extracting energy from organic matter, but also suggests a strategy for promoting the bioremediation of organic contaminants in subsurface environments.}, keywords = {Aerobiosis, Anaerobiosis, Anthraquinones, Benzoates, Biodegradation, Environmental, Carbon Dioxide, Colony Count, Microbial, Deltaproteobacteria, DNA, Ribosomal, Electricity, Electrodes, Electrons, Energy Metabolism, Geologic Sediments, Oxidation-Reduction, RNA, Ribosomal, 16S, Seawater, Sodium Acetate}, issn = {1095-9203}, doi = {10.1126/science.1066771}, author = {Bond, Daniel R and Holmes, Dawn E and Tender, Leonard M and Lovley, Derek R} } @article {755, title = {Expression and transfer of engineered catabolic pathways harbored by Pseudomonas spp. introduced into activated sludge microcosms.}, journal = {Appl Environ Microbiol}, volume = {58}, year = {1992}, month = {1992 Oct}, pages = {3380-6}, abstract = {Two genetically engineered microorganisms (GEMs), Pseudomonas sp. strain B13 FR1(pFRC20P) (FR120) and Pseudomonas putida KT2440(pWWO-EB62) (EB62), were introduced into activated sludge microcosms that had the level of aeration, nutrient makeup, and microbial community structure of activated sludge reactors. FR120 contains an experimentally assembled ortho cleavage route for simultaneous degradation of 3-chlorobenzoate (3CB) and 4-methyl benzoate (4MB); EB62 contains a derivative TOL plasmid-encoded degradative pathway for toluene experimentally evolved so that it additionally processes 4-ethyl benzoate (4EB). Experiments assessed survival of the GEMs, their ability to degrade target substrates, and lateral transfer of plasmid-encoded recombinant DNA. GEMs added at initial densities of 10(6) to 10(7) bacteria per ml of activated sludge declined to stable population densities of 10(4) to 10(5) bacteria per ml. FR120 degraded combinations of 3CB and 4MB (1 mM each) following 3 days of adaptation in the microcosms. Indigenous microorganisms required an 8-day adaptation period before degradation of 4MB was observed; 3CB was degraded only after the concentration of 4MB was much reduced. The indigenous microbial community was killed when both compounds were present at concentrations of 4.0 mM. However, in parallel microcosms containing FR120, the microbial community maintained a normal density of viable cells. Indigenous microbes readily degraded 4EB (2 mM), and EB62 did not significantly increase the observed rate of degradation. In filter matings, transfer of pFRC20P, which specifies mobilization but not transfer functions, from FR120 to P. putida UWC1 was not detectable (< 10(-7) transconjugants per donor cell).(ABSTRACT TRUNCATED AT 250 WORDS)}, keywords = {Benzoates, Biodegradation, Environmental, Gene Expression Regulation, Bacterial, Genetic Engineering, Industrial Waste, Pseudomonas, Transfection, Waste Disposal, Fluid}, issn = {0099-2240}, author = {N{\"u}sslein, K and Maris, D and Timmis, K and Dwyer, D F} }