@article {832, title = {Diversity of radA genes from cultured and uncultured archaea: comparative analysis of putative RadA proteins and their use as a phylogenetic marker.}, journal = {J Bacteriol}, volume = {181}, year = {1999}, month = {1999 Feb}, pages = {907-15}, abstract = {Archaea-specific radA primers were used with PCR to amplify fragments of radA genes from 11 cultivated archaeal species and one marine sponge tissue sample that contained essentially an archaeal monoculture. The amino acid sequences encoded by the PCR fragments, three RadA protein sequences previously published (21), and two new complete RadA sequences were aligned with representative bacterial RecA proteins and eucaryal Rad51 and Dmc1 proteins. The alignment supported the existence of four insertions and one deletion in the archaeal and eucaryal sequences relative to the bacterial sequences. The sizes of three of the insertions were found to have taxonomic and phylogenetic significance. Comparative analysis of the RadA sequences, omitting amino acids in the insertions and deletions, shows a cladal distribution of species which mimics to a large extent that obtained by a similar analysis of archaeal 16S rRNA sequences. The PCR technique also was used to amplify fragments of 15 radA genes from uncultured natural sources. Phylogenetic analysis of the amino acid sequences encoded by these fragments reveals several clades with affinity, sometimes only distant, to the putative RadA proteins of several species of Crenarcheota. The two most deeply branching archaeal radA genes found had some amino acid deletion and insertion patterns characteristic of bacterial recA genes. Possible explanations are discussed. Finally, signature codons are presented to distinguish among RecA protein family members.}, keywords = {Amino Acid Sequence, Archaea, Archaeal Proteins, Bacteria, Bacterial Proteins, Cloning, Molecular, DNA Primers, DNA Repair, DNA-Binding Proteins, Evolution, Molecular, Humans, Molecular Sequence Data, Phylogeny, Polymerase Chain Reaction, Recombinant Proteins, RNA, Ribosomal, 16S, Saccharomyces cerevisiae, Sequence Alignment}, issn = {0021-9193}, author = {Sandler, S J and Hugenholtz, P and Schleper, C and DeLong, E F and Pace, N R and Clark, A J} } @article {834, title = {Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms.}, journal = {J Mol Evol}, volume = {44}, year = {1997}, month = {1997 May}, pages = {528-41}, abstract = {Protein sequences with similarities to Escherichia coli RecA were compared across the major kingdoms of eubacteria, archaebacteria, and eukaryotes. The archaeal sequences branch monophyletically and are most closely related to the eukaryotic paralogous Rad51 and Dmc1 groups. A multiple alignment of the sequences suggests a modular structure of RecA-like proteins consisting of distinct segments, some of which are conserved only within subgroups of sequences. The eukaryotic and archaeal sequences share an N-terminal domain which may play a role in interactions with other factors and nucleic acids. Several positions in the alignment blocks are highly conserved within the eubacteria as one group and within the eukaryotes and archaebacteria as a second group, but compared between the groups these positions display nonconservative amino acid substitutions. Conservation within the RecA-like core domain identifies possible key residues involved in ATP-induced conformational changes. We propose that RecA-like proteins derive evolutionarily from an assortment of independent domains and that the functional homologs of RecA in noneubacteria comprise an array of RecA-like proteins acting in series or cooperatively.}, keywords = {Amino Acid Sequence, Animals, Archaeal Proteins, Bacteria, Bacterial Proteins, Cell Cycle Proteins, Consensus Sequence, Conserved Sequence, DNA-Binding Proteins, Escherichia coli Proteins, Evolution, Molecular, Humans, Molecular Sequence Data, Phylogeny, Rad51 Recombinase, Rec A Recombinases, Sequence Alignment}, issn = {0022-2844}, author = {Brendel, V and Brocchieri, L and Sandler, S J and Clark, A J and Karlin, S} } @article {835, title = {recA-like genes from three archaean species with putative protein products similar to Rad51 and Dmc1 proteins of the yeast Saccharomyces cerevisiae.}, journal = {Nucleic Acids Res}, volume = {24}, year = {1996}, month = {1996 Jun 1}, pages = {2125-32}, abstract = {The process of homologous recombination has been documented in bacterial and eucaryotic organisms. The Escherichia coli RecA and Saccharomyces cerevisiae Rad51 proteins are the archetypal members of two related families of proteins that play a central role in this process. Using the PCR process primed by degenerate oligonucleotides designed to encode regions of the proteins showing the greatest degree of identity, we examined DNA from three organisms of a third phylogenetically divergent group, Archaea, for sequences encoding proteins similar to RecA and Rad51. The archaeans examined were a hyperthermophilic acidophile, Sulfolobus sofataricus (Sso); a halophile, Haloferax volcanii (Hvo); and a hyperthermophilic piezophilic methanogen, Methanococcus jannaschii (Mja). The PCR generated DNA was used to clone a larger genomic DNA fragment containing an open reading frame (orf), that we refer to as the radA gene, for each of the three archaeans. As shown by amino acid sequence alignments, percent amino acid identities and phylogenetic analysis, the putative proteins encoded by all three are related to each other and to both the RecA and Rad51 families of proteins. The putative RadA proteins are more similar to the Rad51 family (approximately 40\% identity at the amino acid level) than to the RecA family (approximately 20\%). Conserved sequence motifs, putative tertiary structures and phylogenetic analysis implied by the alignment are discussed. The 5{\textquoteright} ends of mRNA transcripts to the Sso radA were mapped. The levels of radA mRNA do not increase after treatment with UV irradiation as do recA and RAD51 transcripts in E.coli and S.cerevisiae. Hence it is likely that radA in this organism is a constitutively expressed gene and we discuss possible implications of the lack of UV-inducibility.}, keywords = {Amino Acid Sequence, Archaea, Base Sequence, Cell Cycle Proteins, DNA-Binding Proteins, Escherichia coli, Halobacteriaceae, Methanococcus, Models, Molecular, Molecular Sequence Data, Phylogeny, Rad51 Recombinase, Rec A Recombinases, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Sequence Alignment, Sulfolobus}, issn = {0305-1048}, author = {Sandler, S J and Satin, L H and Samra, H S and Clark, A J} } @article {844, title = {Sequence and complementation analysis of recF genes from Escherichia coli, Salmonella typhimurium, Pseudomonas putida and Bacillus subtilis: evidence for an essential phosphate binding loop.}, journal = {Nucleic Acids Res}, volume = {20}, year = {1992}, month = {1992 Feb 25}, pages = {839-45}, abstract = {We have compared the recF genes from Escherichia coli K-12, Salmonella typhimurium, Pseudomonas putida, and Bacillus subtilis at the DNA and amino acid sequence levels. To do this we determined the complete nucleotide sequence of the recF gene from Salmonella typhimurium and we completed the nucleotide sequence of recF gene from Pseudomonas putida begun by Fujita et al. (1). We found that the RecF proteins encoded by these two genes contain respectively 92\% and 38\% amino acid identity with the E. coli RecF protein. Additionally, we have found that the S. typhimurium and P. putida recF genes will complement an E. coli recF mutant, but the recF gene from Bacillus subtilis [showing about 20\% identity with E. coli (2)] will not. Amino acid sequence alignment of the four proteins identified four highly conserved regions. Two of these regions are part of a putative phosphate binding loop. In one region (position 36), we changed the lysine codon (which is essential for ATPase, GTPase and kinase activity in other proteins having this phosphate binding loop) to an arginine codon. We then tested this mutation (recF4101) on a multicopy plasmid for its ability to complement a recF chromosomal mutation and on the E. coli chromosome for its effect on sensitivity to UV irradiation. The strain with recF4101 on its chromosome is as sensitive as a null recF mutant strain. The strain with the plasmid-borne mutant allele is however more UV resistant than the null mutant strain. We conclude that lysine-36 and possibly a phosphate binding loop is essential for full recF activity. Lastly we made two chimeric recF genes by exchanging the amino terminal 48 amino acids of the S. typhimurium and E. coli recF genes. Both chimeras could complement E. coli chromosomal recF mutations.}, keywords = {Amino Acid Sequence, Bacillus subtilis, Bacterial Proteins, Base Sequence, Binding Sites, DNA, Bacterial, DNA-Binding Proteins, Escherichia coli, Escherichia coli Proteins, Genes, Bacterial, Genetic Complementation Test, Molecular Sequence Data, Nucleic Acid Conformation, Phosphates, Pseudomonas putida, Salmonella typhimurium, Sequence Alignment}, issn = {0305-1048}, author = {Sandler, S J and Chackerian, B and Li, J T and Clark, A J} } @article {846, title = {Molecular analysis of the recF gene of Escherichia coli.}, journal = {Proc Natl Acad Sci U S A}, volume = {81}, year = {1984}, month = {1984 Aug}, pages = {4622-6}, abstract = {We analyzed the nucleotide sequence of a 1.325-kilobase region of wild-type Escherichia coli containing a functional recF gene and six Tn3 mutations that inactivate recF. The analysis shows a potentially translatable reading frame of 1071 nucleotides, which is interrupted by all six insertions. A protein of 40.5 kilodaltons would result from translation of the open reading frame, and a radioactive band of protein of an apparent molecular weight of approximately 40 kilodaltons was seen by the maxicell method using a recF+ plasmid. Putative truncated peptides were seen when two recF::Tn3 mutant plasmids were used. Differential expression of dnaN and recF from a common promoter was noted. recF332::Tn3 was transferred to the chromosome where, in hemizygous condition, it produced UV sensitivity indistinguishable from that produced by two presumed recF point mutations.}, keywords = {Amino Acid Sequence, Bacterial Proteins, Base Sequence, DNA Repair, DNA Replication, Escherichia coli, Genes, Bacterial, Molecular Weight, Mutation, Plasmids, Recombination, Genetic}, issn = {0027-8424}, author = {Blanar, M A and Sandler, S J and Armengod, M E and Ream, L W and Clark, A J} }