Publications
Magnetite formation from ferrihydrite by hyperthermophilic archaea from Endeavour Segment, Juan de Fuca Ridge hydrothermal vent chimneys.. Geobiology. 12(3):200-11.
.
2014. Mycobacterial Esx-3 requires multiple components for iron acquisition.. MBio. 5(3):e01073-14.
.
2014. Interference of ferric ions with ferrous iron quantification using the ferrozine assay.. J Microbiol Methods. 95(3):366-7.
.
2013. Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens.. Biochim Biophys Acta. 1807(4):404-12.
.
2011. The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments.. BMC Genomics. 11:490.
.
2010. Microbial communities acclimate to recurring changes in soil redox potential status.. Environ Microbiol. 12(12):3137-49.
.
2010. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation.. Microb Biotechnol. 2(2):274-86.
.
2009. Genome-scale constraint-based modeling of Geobacter metallireducens.. BMC Syst Biol. 3:15.
.
2009. Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition.. Proc Natl Acad Sci U S A. 106(44):18792-7.
.
2009. Constraints on anaerobic respiration in the hyperthermophilic Archaea Pyrobaculum islandicum and Pyrobaculum aerophilum.. Appl Environ Microbiol. 74(2):396-402.
.
2008. Gene transcript analysis of assimilatory iron limitation in Geobacteraceae during groundwater bioremediation.. Environ Microbiol. 10(5):1218-30.
.
2008. Genome-wide gene expression patterns and growth requirements suggest that Pelobacter carbinolicus reduces Fe(III) indirectly via sulfide production.. Appl Environ Microbiol. 74(14):4277-84.
.
2008. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling.. Appl Environ Microbiol. 72(2):1558-68.
.
2006. Preferential reduction of FeIII over fumarate by Geobacter sulfurreducens.. J Bacteriol. 186(9):2897-9.
.
2004. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.. Nat Biotechnol. 21(10):1229-32.
.
2003. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens.. J Bacteriol. 185(7):2096-103.
.
2003. .
2003. Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments.. Appl Environ Microbiol. 68(5):2300-6.
.
2002. Fulvic acid oxidation state detection using fluorescence spectroscopy.. Environ Sci Technol. 36(14):3170-5.
.
2002. Rapid evolution of redox processes in a petroleum hydrocarbon-contaminated aquifer.. Ground Water. 40(4):353-60.
.
2002. Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers.. Int J Syst Evol Microbiol. 51(Pt 2):581-8.
.
2001. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens.. Appl Environ Microbiol. 66(5):2248-51.
.
2000. N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species.. Environ Microbiol. 2(3):266-73.
.
2000. Reduction of Fe(III), Mn(IV), and toxic metals at 100 degrees C by Pyrobaculum islandicum.. Appl Environ Microbiol. 66(3):1050-6.
.
2000. Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction.. Appl Environ Microbiol. 65(9):4252-4.
.
1999.