Caveolin-2 associates with intracellular chlamydial inclusions independently of caveolin-1.

TitleCaveolin-2 associates with intracellular chlamydial inclusions independently of caveolin-1.
Publication TypeJournal Article
Year of Publication2004
AuthorsWebley WC, Norkin LC, Stuart ES
JournalBMC Infect Dis
Volume4
Pagination23
Date Published2004 Jul 22
ISSN1471-2334
KeywordsAnimals, Blotting, Western, Caveolin 1, Caveolin 2, Caveolins, Cells, Cultured, Chlamydia, Fluorescent Antibody Technique, Golgi Apparatus, Guinea Pigs, HeLa Cells, Humans, Mice, Microscopy, Confocal, Rats, Vacuoles, Virulence
Abstract

BACKGROUND: Lipid raft domains form in plasma membranes of eukaryotic cells by the tight packing of glycosphingolipids and cholesterol. Caveolae are invaginated structures that form in lipid raft domains when the protein caveolin-1 is expressed. The Chlamydiaceae are obligate intracellular bacterial pathogens that replicate entirely within inclusions that develop from the phagocytic vacuoles in which they enter. We recently found that host cell caveolin-1 is associated with the intracellular vacuoles and inclusions of some chlamydial strains and species, and that entry of those strains depends on intact lipid raft domains. Caveolin-2 is another member of the caveolin family of proteins that is present in caveolae, but of unknown function.

METHODS: We utilized a caveolin-1 negative/caveolin-2 positive FRT cell line and laser confocal immunofluorescence techniques to visualize the colocalization of caveolin-2 with the chlamydial inclusions.

RESULTS: We show here that in infected HeLa cells, caveolin-2, as well as caveolin-1, colocalizes with inclusions of C. pneumoniae (Cp), C. caviae (GPIC), and C. trachomatis serovars E, F and K. In addition, caveolin-2 also associates with C. trachomatis serovars A, B and C, although caveolin-1 did not colocalize with these organisms. Moreover, caveolin-2 appears to be specifically, or indirectly, associated with the pathogens at the inclusion membranes. Using caveolin-1 deficient FRT cells, we show that although caveolin-2 normally is not transported out of the Golgi in the absence of caveolin-1, it nevertheless colocalizes with chlamydial inclusions in these cells. However, our results also show that caveolin-2 did not colocalize with UV-irradiated Chlamydia in FRT cells, suggesting that in these caveolin-1 negative cells, pathogen viability and very likely pathogen gene expression are necessary for the acquisition of caveolin-2 from the Golgi.

CONCLUSION: Caveolin-2 associates with the chlamydial inclusion independently of caveolin-1. The function of caveolin-2, either in the uninfected cell or in the chlamydial developmental cycle, remains to be elucidated. Nevertheless, this second caveolin protein can now be added to the small number of host proteins that are associated with the inclusions of this obligate intracellular pathogen.

DOI10.1186/1471-2334-4-23
Alternate JournalBMC Infect. Dis.
PubMed ID15271223